!pip install pandas matplotlib fsspec s3fs "zarr<3" pyarrow xarray
Show code cell output Hide code cell output
Requirement already satisfied: pandas in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.3)
Requirement already satisfied: matplotlib in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (3.9.0)
Requirement already satisfied: fsspec in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: s3fs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: zarr<3 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.15.0)
Requirement already satisfied: pyarrow in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (12.0.1)
Requirement already satisfied: xarray in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2023.7.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (1.25.2)
Requirement already satisfied: contourpy>=1.0.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: aiobotocore<3.0.0,>=2.5.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (2.13.0)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (3.9.5)
Requirement already satisfied: asciitree in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.3.3)
Requirement already satisfied: fasteners in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.19)
Requirement already satisfied: numcodecs>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.12.1)
Requirement already satisfied: botocore<1.34.107,>=1.34.70 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.34.106)
Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.16.0)
Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (0.11.0)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (23.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.9.4)
Requirement already satisfied: six>=1.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (1.0.1)
Requirement already satisfied: urllib3!=2.2.0,<3,>=1.25.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (2.2.1)
Requirement already satisfied: idna>=2.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from yarl<2.0,>=1.0->aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (3.7)
import zarr
import fsspec
import xarray as xr
import numpy as np
import requests
from scipy.signal import stft
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
plt.rcParams["font.family"] = "sans"
plt.rcParams["font.size"] = 8
Raw FAIR MAST Data#
This notebook contains example plots of data from different diagnostics across MAST without any preprocessing, interpolation, calibration, cropping etc. applied to the dataset. Data are supplied under their original names which may be harder to understand and work with. This dataset contains all data traces that could be pulled from the MAST experiment, including instrument calibration and testing shots. This product shot be seen as less reliable.
First we need to find the url to a particular shot. Here we are going to use shot 30421 as an example.
shot_data = requests.get("https://mastapp.site/json/shots/30421")
shot_data = shot_data.json()
fs = fsspec.filesystem(
**dict(
protocol='simplecache',
target_protocol="s3",
target_options=dict(anon=True, endpoint_url=shot_data['endpoint_url'])
)
)
store = zarr.storage.FSStore(fs=fs, url=shot_data['url'])
Plasma Current Data#
Data from the amc
source contains
Plasma Current (\(I_p\)): Flows within the plasma, providing initial heating and contributing to the poloidal magnetic field for confinement and stability.
PF Coil Currents: Control the poloidal magnetic field, allowing for plasma shaping, vertical stability, and edge magnetic configuration control.
TF Coil Currents: Generate the strong toroidal magnetic field necessary for primary plasma confinement.
dataset = xr.open_zarr(store, group='amc')
dataset = dataset.isel(time=(dataset.time > 0) & (dataset.time < .35))
fig, axes = plt.subplots(3, 1, figsize=(10, 6))
ax1, ax2, ax3 = axes.flatten()
ax1.plot(dataset['time'], dataset['plasma_current'])
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Plasma Current $I_p$ (kA)')
ax2.plot(dataset['time'], dataset['sol_current'])
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Solenoid Feed Current (kA)')
ax3.plot(dataset['time'], dataset['tf_current'])
ax3.set_xlabel('Time (s)')
ax3.set_ylabel('TF Feed Current (kA)')
for ax in axes:
ax.grid(alpha=0.3)
plt.tight_layout()

Thompson Scattering Data#
ayc
source holds the Thomspon Scattering data at the core. Thomson scattering diagnostics provide accurate measurements of electron temperature and density.
dataset = xr.open_zarr(store, group='ayc')
dataset = dataset[['te_core', 'ne_core']].dropna(dim='time')
fig, axes = plt.subplots(2,1)
ax1, ax2 = axes
ax1.plot(dataset['time'], dataset['te_core'])
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Core Temperature (eV)')
ax2.plot(dataset['time'], dataset['ne_core'])
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Peak Core Electron Density ($1 / m^3$)')
for ax in axes:
ax.grid(alpha=0.3)
plt.tight_layout()

CO2 Interferometers#
CO2 interferometers (ane
) are used to measure the electron density in the plasma. By measuring the phase shift of the laser beam as it passes through the plasma, the electron density can be inferred with high precision.
dataset = catalog.level1.shots(url=url, group='ane')
dataset = dataset.to_dask()
dataset
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[6], line 1
----> 1 dataset = catalog.level1.shots(url=url, group='ane')
2 dataset = dataset.to_dask()
4 dataset
NameError: name 'catalog' is not defined
dataset = xr.open_zarr(store, group='ane')
plt.plot(dataset['time'], dataset['density'])
ax.set_xlabel('Time (s)')
ax.set_ylabel('Integrated Electron Density ($1 / m^2$)')
ax.grid(alpha=0.3)
plt.tight_layout()

Equillibrium Reconstruction Data#
The source efm
contains data from EFIT. EFIT is a computational tool used to reconstruct the magnetic equilibrium configuration of the plasma in a tokamak. It calculates the shape and position of the plasma, as well as the distribution of the current and pressure within it, based on magnetic measurements.
dataset = xr.open_zarr(store, group='efm')
dataset
<xarray.Dataset> Size: 8MB Dimensions: (time: 120, psi_norm: 65, n_iterations: 10, fcoil_seg_n: 938, fcoil_n: 101, ffprime_coefs_n: 2, mag_probe_n: 78, psi_loop_n: 46, r: 65, z: 65, profile_r: 129, lcfs_coords: 139, limiter_n: 37, pprime_coefs_n: 2, profile_z: 65) Coordinates: (12/13) * fcoil_n (fcoil_n) float32 404B 0.0 1.0 2.0 ... 98.0 99.0 100.0 * ffprime_coefs_n (ffprime_coefs_n) float32 8B 0.0 1.0 * lcfs_coords (lcfs_coords) float32 556B 0.0 1.0 2.0 ... 137.0 138.0 * mag_probe_n (mag_probe_n) float32 312B 0.0 1.0 2.0 ... 75.0 76.0 77.0 * n_iterations (n_iterations) float32 40B 0.0 1.0 2.0 ... 7.0 8.0 9.0 * pprime_coefs_n (pprime_coefs_n) float32 8B 0.0 1.0 ... ... * profile_z (profile_z) float32 260B -2.0 -1.938 -1.875 ... 1.938 2.0 * psi_loop_n (psi_loop_n) float32 184B 0.0 1.0 2.0 ... 43.0 44.0 45.0 * psi_norm (psi_norm) float32 260B 0.0 0.01562 ... 0.9844 1.0 * r (r) float32 260B 0.06 0.09031 0.1206 ... 1.939 1.97 2.0 * time (time) float32 480B -0.05 -0.045 -0.04 ... 0.56 0.565 0.6 * z (z) float32 260B -2.0 -1.938 -1.875 ... 1.875 1.938 2.0 Dimensions without coordinates: fcoil_seg_n, limiter_n Data variables: (12/151) all_times (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> areap_c (time, psi_norm) float32 31kB dask.array<chunksize=(120, 65), meta=np.ndarray> betan (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> betap (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> betapd (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> betat (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> ... ... wpol (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> xpoint1_rc (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> xpoint1_zc (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> xpoint2_rc (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> xpoint2_zc (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> zbdry (time) float32 480B dask.array<chunksize=(120,), meta=np.ndarray> Attributes: description: Basic EFIT file_name: efm0304.21 format: IDA3 mds_name: None name: efm quality: Not Checked shot_id: 30421 signal_type: Analysed source: efm uda_name: EFM uuid: e75f0185-8b80-58f7-a1dd-5f7fc4659a12 version: 0
- time: 120
- psi_norm: 65
- n_iterations: 10
- fcoil_seg_n: 938
- fcoil_n: 101
- ffprime_coefs_n: 2
- mag_probe_n: 78
- psi_loop_n: 46
- r: 65
- z: 65
- profile_r: 129
- lcfs_coords: 139
- limiter_n: 37
- pprime_coefs_n: 2
- profile_z: 65
- fcoil_n(fcoil_n)float320.0 1.0 2.0 3.0 ... 98.0 99.0 100.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100.], dtype=float32)
- ffprime_coefs_n(ffprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- lcfs_coords(lcfs_coords)float320.0 1.0 2.0 ... 136.0 137.0 138.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138.], dtype=float32)
- mag_probe_n(mag_probe_n)float320.0 1.0 2.0 3.0 ... 75.0 76.0 77.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.], dtype=float32)
- n_iterations(n_iterations)float320.0 1.0 2.0 3.0 ... 6.0 7.0 8.0 9.0
- units :
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32)
- pprime_coefs_n(pprime_coefs_n)float320.0 1.0
- units :
array([0., 1.], dtype=float32)
- profile_r(profile_r)float320.0 0.01562 0.03125 ... 1.97 2.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.06 , 0.0625 , 0.078125, 0.090312, 0.09375 , 0.109375, 0.120625, 0.125 , 0.140625, 0.150937, 0.15625 , 0.171875, 0.18125 , 0.1875 , 0.203125, 0.211563, 0.21875 , 0.234375, 0.241875, 0.25 , 0.265625, 0.272188, 0.28125 , 0.296875, 0.3025 , 0.3125 , 0.328125, 0.332813, 0.34375 , 0.359375, 0.363125, 0.375 , 0.390625, 0.393438, 0.40625 , 0.421875, 0.42375 , 0.4375 , 0.453125, 0.454063, 0.46875 , 0.484375, 0.5 , 0.514687, 0.515625, 0.53125 , 0.545 , 0.546875, 0.5625 , 0.575312, 0.578125, 0.59375 , 0.605625, 0.609375, 0.625 , 0.635938, 0.640625, 0.65625 , 0.66625 , 0.671875, 0.6875 , 0.696563, 0.703125, 0.71875 , 0.726875, 0.734375, 0.75 , 0.757188, 0.765625, 0.78125 , 0.7875 , 0.796875, 0.8125 , 0.817813, 0.828125, 0.84375 , 0.848125, 0.859375, 0.875 , 0.878438, 0.890625, 0.90625 , 0.90875 , 0.921875, 0.9375 , 0.939063, 0.953125, 0.96875 , 0.969375, 0.984375, 0.999688, 1. , 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- profile_z(profile_z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- psi_loop_n(psi_loop_n)float320.0 1.0 2.0 3.0 ... 43.0 44.0 45.0
- units :
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45.], dtype=float32)
- psi_norm(psi_norm)float320.0 0.01562 0.03125 ... 0.9844 1.0
- units :
array([0. , 0.015625, 0.03125 , 0.046875, 0.0625 , 0.078125, 0.09375 , 0.109375, 0.125 , 0.140625, 0.15625 , 0.171875, 0.1875 , 0.203125, 0.21875 , 0.234375, 0.25 , 0.265625, 0.28125 , 0.296875, 0.3125 , 0.328125, 0.34375 , 0.359375, 0.375 , 0.390625, 0.40625 , 0.421875, 0.4375 , 0.453125, 0.46875 , 0.484375, 0.5 , 0.515625, 0.53125 , 0.546875, 0.5625 , 0.578125, 0.59375 , 0.609375, 0.625 , 0.640625, 0.65625 , 0.671875, 0.6875 , 0.703125, 0.71875 , 0.734375, 0.75 , 0.765625, 0.78125 , 0.796875, 0.8125 , 0.828125, 0.84375 , 0.859375, 0.875 , 0.890625, 0.90625 , 0.921875, 0.9375 , 0.953125, 0.96875 , 0.984375, 1. ], dtype=float32)
- r(r)float320.06 0.09031 0.1206 ... 1.97 2.0
- units :
- m
array([0.06 , 0.090312, 0.120625, 0.150937, 0.18125 , 0.211563, 0.241875, 0.272188, 0.3025 , 0.332813, 0.363125, 0.393438, 0.42375 , 0.454063, 0.484375, 0.514687, 0.545 , 0.575312, 0.605625, 0.635938, 0.66625 , 0.696563, 0.726875, 0.757188, 0.7875 , 0.817813, 0.848125, 0.878438, 0.90875 , 0.939063, 0.969375, 0.999688, 1.03 , 1.060313, 1.090625, 1.120937, 1.15125 , 1.181562, 1.211875, 1.242188, 1.2725 , 1.302812, 1.333125, 1.363438, 1.39375 , 1.424062, 1.454375, 1.484687, 1.515 , 1.545313, 1.575625, 1.605937, 1.63625 , 1.666562, 1.696875, 1.727188, 1.7575 , 1.787812, 1.818125, 1.848438, 1.87875 , 1.909063, 1.939375, 1.969687, 2. ], dtype=float32)
- time(time)float32-0.05 -0.045 -0.04 ... 0.565 0.6
- units :
- S
array([-0.05 , -0.045, -0.04 , -0.035, -0.03 , -0.025, -0.02 , -0.015, -0.01 , -0.005, 0. , 0.03 , 0.035, 0.04 , 0.045, 0.05 , 0.055, 0.06 , 0.065, 0.07 , 0.075, 0.08 , 0.085, 0.09 , 0.095, 0.1 , 0.105, 0.11 , 0.115, 0.12 , 0.125, 0.13 , 0.135, 0.14 , 0.145, 0.15 , 0.155, 0.16 , 0.165, 0.17 , 0.175, 0.18 , 0.185, 0.19 , 0.195, 0.2 , 0.205, 0.21 , 0.215, 0.22 , 0.225, 0.23 , 0.235, 0.24 , 0.245, 0.25 , 0.255, 0.26 , 0.265, 0.27 , 0.275, 0.28 , 0.285, 0.29 , 0.295, 0.3 , 0.305, 0.31 , 0.315, 0.32 , 0.325, 0.33 , 0.335, 0.34 , 0.345, 0.35 , 0.355, 0.36 , 0.365, 0.37 , 0.375, 0.38 , 0.385, 0.39 , 0.395, 0.4 , 0.405, 0.41 , 0.415, 0.42 , 0.425, 0.43 , 0.435, 0.44 , 0.445, 0.45 , 0.455, 0.46 , 0.465, 0.47 , 0.475, 0.48 , 0.485, 0.49 , 0.495, 0.5 , 0.505, 0.51 , 0.515, 0.52 , 0.525, 0.53 , 0.535, 0.54 , 0.545, 0.55 , 0.555, 0.56 , 0.565, 0.6 ], dtype=float32)
- z(z)float32-2.0 -1.938 -1.875 ... 1.938 2.0
- units :
- m
array([-2. , -1.9375, -1.875 , -1.8125, -1.75 , -1.6875, -1.625 , -1.5625, -1.5 , -1.4375, -1.375 , -1.3125, -1.25 , -1.1875, -1.125 , -1.0625, -1. , -0.9375, -0.875 , -0.8125, -0.75 , -0.6875, -0.625 , -0.5625, -0.5 , -0.4375, -0.375 , -0.3125, -0.25 , -0.1875, -0.125 , -0.0625, 0. , 0.0625, 0.125 , 0.1875, 0.25 , 0.3125, 0.375 , 0.4375, 0.5 , 0.5625, 0.625 , 0.6875, 0.75 , 0.8125, 0.875 , 0.9375, 1. , 1.0625, 1.125 , 1.1875, 1.25 , 1.3125, 1.375 , 1.4375, 1.5 , 1.5625, 1.625 , 1.6875, 1.75 , 1.8125, 1.875 , 1.9375, 2. ], dtype=float32)
- all_times(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- All times of attempted reconstruction (time base A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:ALL_TIMES
- name :
- efm/all_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ALL_TIMES
- units :
- s
- uuid :
- f18f3951-b95a-5082-ad34-9c8b0254eb3a
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - areap_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Poloidal area enclosed by flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol area of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:AREAP_C
- name :
- efm/areap_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_AREAP_(C)
- units :
- m ** 2
- uuid :
- dd589ac9-9239-553e-803c-de596885ed4e
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betan(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Normalised beta, efm_betat * | plasma minor radius (m) * vacuum toroidal B field at magnetic axis (T) / plasma current (MA) |; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- betat/(I/ a Bvac_geom)
- mds_name :
- \TOP.ANALYSED.EFM:BETAN
- name :
- efm/betan
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAN
- units :
- T
- uuid :
- 9d01928c-0460-5687-a697-c26188573c0a
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betap(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Poloidal beta, volume-averaged pressure * 2 * mu_0 / <Bp>^2, Bp = averaged poloidal B field around LCFS (T), mu_0*I_plasma/integral(dl); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAP
- name :
- efm/betap
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAP
- units :
- uuid :
- 1c78188e-2f04-58de-9d72-1258ed7b966c
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betapd(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Poloidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETAPD
- name :
- efm/betapd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAPD
- units :
- uuid :
- f541bb9b-9ab0-568a-82c0-af80f943104b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betat(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Toroidal beta, volume-averaged pressure * 2 * mu_0 / Bphi^2, Bphi = vacuum toroidal B field at magnetic axis (T); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Beta
- mds_name :
- \TOP.ANALYSED.EFM:BETAT
- name :
- efm/betat
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETAT
- units :
- %
- uuid :
- 45b8b29f-5dcc-5c21-b1c2-55b8b64de290
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - betatd(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Toroidal beta computed using diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Toroidal Diamagnetic Bet
- mds_name :
- \TOP.ANALYSED.EFM:BETATD
- name :
- efm/betatd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BETATD
- units :
- uuid :
- 00afa888-71b9-51d8-91f4-867780270a25
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rgeom(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Toroidal B field (total) at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RGEOM
- name :
- efm/bphi_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RGEOM
- units :
- T
- uuid :
- f473dd76-b236-5ecf-bf6a-0c215924749d
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_rmag(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Toroidal B field (total) at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_RMAG
- name :
- efm/bphi_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_RMAG
- units :
- T
- uuid :
- 86365382-4e75-50ce-ac46-77fe8ae27c50
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bphi_squared(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- plasma volume integral of (total toroidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bphi^2 dV
- mds_name :
- \TOP.ANALYSED.EFM:BPHI_SQUARED
- name :
- efm/bphi_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPHI_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- 9fc11fe2-4558-5ae7-adc9-1e76994bf24b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bpol_squared(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- plasma volume integral of (total poloidal B field squared); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bpol dV
- mds_name :
- \TOP.ANALYSED.EFM:BPOL_SQUARED
- name :
- efm/bpol_squared
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BPOL_SQUARED
- units :
- m ** 3 * T ** 2
- uuid :
- e3338739-04d7-58a1-996f-5bdb9518a410
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_r(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Reference radius for efm_bvac_val; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius at where B_phi=_b
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_R
- name :
- efm/bvac_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_R
- units :
- m
- uuid :
- 2e44b3ba-e5f9-56b5-86d6-fe955ca2176d
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rgeom(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at geometric axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rgeom
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RGEOM
- name :
- efm/bvac_rgeom
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RGEOM
- units :
- T
- uuid :
- 3772a972-79fe-5ce1-bbb1-05107bc31b6b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_rmag(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Vacuum toroidal B field at magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Bvac at rmag
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_RMAG
- name :
- efm/bvac_rmag
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_RMAG
- units :
- T
- uuid :
- fb0b4809-4d5e-54f2-8970-5a7a9ae2a338
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - bvac_val(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Reference vacuum toroidal B field at efm_bvac_r; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Vacuum toroidal field at
- mds_name :
- \TOP.ANALYSED.EFM:BVAC_VAL
- name :
- efm/bvac_val
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_BVAC_VAL
- units :
- T
- uuid :
- 8251caa9-fcee-5d5a-829c-e2eca500e77d
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - chisq_magnetic(time, n_iterations)float32dask.array<chunksize=(120, 10), meta=np.ndarray>
- description :
- Magnetic fit total chi-squared for each iteration; f(num_iterations, A)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM.CHISQ:MAGNETIC
- name :
- efm/chisq_magnetic
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 10]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CHISQ_MAGNETIC
- units :
- uuid :
- 8e18232a-4556-5a90-9a84-1a83dbe13c37
- version :
- 0
Array Chunk Bytes 4.69 kiB 4.69 kiB Shape (120, 10) (120, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cm_bdry(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Normalised psi at detected boundary surface; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- computed normalized psi_
- mds_name :
- \TOP.ANALYSED.EFM:CM_BDRY
- name :
- efm/cm_bdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CM_BDRY
- units :
- uuid :
- 53367800-c216-537c-b6c8-ee109f886f57
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cnvrgd_times(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_TIME
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:CNVRGD_TIMES
- name :
- efm/cnvrgd_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CNVRGD_TIMES
- units :
- s
- uuid :
- 964a9476-e4b0-5078-b8b5-24f070097719
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_r(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- R co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_R
- name :
- efm/current_centrd_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_R
- units :
- m
- uuid :
- 54a64fef-28fe-525f-91af-e0b5116b4afb
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - current_centrd_z(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Z co-ordinate of current centroid; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- height of current centro
- mds_name :
- \TOP.ANALYSED.EFM.CURRENT:CENTRD_Z
- name :
- efm/current_centrd_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CURRENT_CENTRD_Z
- units :
- m
- uuid :
- ef7bbcb3-b44d-57bf-8fc9-a82627d42a8b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cutip()float32...
- description :
- Plasma current cut-off; currents below this imply vacuum reconstruction
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Ip threshold current
- mds_name :
- \TOP.ANALYSED.EFM:CUTIP
- name :
- efm/cutip
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_CUTIP
- units :
- A
- uuid :
- f91aafbb-20f7-5678-8f55-eb703fe6e14f
- version :
- 0
[1 values with dtype=float32]
- diamag_fluxc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Output (computed) diamagnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:C
- name :
- efm/diamag_fluxc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(C)
- units :
- Wb
- uuid :
- 2fd922ba-250c-516c-afd0-2bf8bfccf2c0
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - diamag_fluxx(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Input (experimental) diamagnetic flux; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Diamagnetic Flu
- mds_name :
- \TOP.ANALYSED.EFM.DIAMAG_FLUX:X
- name :
- efm/diamag_fluxx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_DIAMAG_FLUX(X)
- units :
- Wb
- uuid :
- 52b4cc22-d750-5483-9810-d9bcc8d6a866
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Elongation of LCFS; (Zmax-Zmin)/(Rmax-Rmin); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation
- mds_name :
- \TOP.ANALYSED.EFM:ELONGATION
- name :
- efm/elongation
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION
- units :
- uuid :
- 494f716c-2fe6-541d-9816-1fc4c1959d86
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongation_axis(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Limit of elongation at magnetic axis, from flux differentials; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Elongation on Magnetic A
- mds_name :
- \TOP.ANALYSED.EFM.ELONGATION_:AXIS
- name :
- efm/elongation_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONGATION_AXIS
- units :
- uuid :
- 49d249d9-d678-5b5e-bfb0-52bb4fe20eb4
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - elongpsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Elongation of flux surfaces; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- elongation of surfaces
- mds_name :
- \TOP.ANALYSED.EFM:ELONG_PSI_C
- name :
- efm/elongpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ELONG(PSI)_(C)
- units :
- uuid :
- 914cf644-b70b-5bfb-bc27-7fc009e17649
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang1(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of first type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 1
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG1
- name :
- efm/fcoil_ang1
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG1
- units :
- deg
- uuid :
- b5e0e457-51a5-5aa5-938a-c75849f580d1
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_ang2(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Defining angular skew of second type for each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Angle 2
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_ANG2
- name :
- efm/fcoil_ang2
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_ANG2
- units :
- deg
- uuid :
- 6f6fc0aa-e08d-5f7a-a87a-cb6662207598
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_c(time, fcoil_n)float32dask.array<chunksize=(120, 101), meta=np.ndarray>
- description :
- Output (computed) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Computed f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_C
- name :
- efm/fcoil_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 101]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(C)
- units :
- A
- uuid :
- b11b7647-f109-554a-9117-be367fdeedf9
- version :
- 0
Array Chunk Bytes 47.34 kiB 47.34 kiB Shape (120, 101) (120, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_chisq(time, fcoil_n)float32dask.array<chunksize=(120, 101), meta=np.ndarray>
- description :
- Chi-squared of each fitted f-coil; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each f-coil
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CHISQ
- name :
- efm/fcoil_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 101]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CHISQ
- units :
- uuid :
- 40f0b6f3-8cc8-5358-ba20-bd1c72b95cc2
- version :
- 0
Array Chunk Bytes 47.34 kiB 47.34 kiB Shape (120, 101) (120, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_circ(fcoil_seg_n)float64dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Circuit number of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil circuit
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_CIRC
- name :
- efm/fcoil_circ
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_CIRC
- units :
- uuid :
- 496920c1-decf-5576-b4c7-83769ad4b9c4
- version :
- 0
Array Chunk Bytes 7.33 kiB 7.33 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - fcoil_height(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_HEIGHT
- name :
- efm/fcoil_height
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_HEIGHT
- units :
- m
- uuid :
- 9c25db48-09f1-52c4-b17c-5c34187569d7
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_r(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Radius
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_R
- name :
- efm/fcoil_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_R
- units :
- m
- uuid :
- ab240bd7-52a1-5a7b-a409-a3cc311fc1ca
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_turns(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Number of turns represented by each f-coil elements; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_TURNS
- name :
- efm/fcoil_turns
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_TURNS
- units :
- deg
- uuid :
- 795d5485-9fb7-5f0b-9c08-63f1e72b12a4
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_width(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- R extent of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Width
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_WIDTH
- name :
- efm/fcoil_width
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_WIDTH
- units :
- m
- uuid :
- 747e7562-effd-573c-af60-b8c1e1106fbe
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_x(time, fcoil_n)float32dask.array<chunksize=(120, 101), meta=np.ndarray>
- description :
- Input (experimental) fitted toroidal currents; f(nfcoil, A)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- Measured f-coil current
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_X
- name :
- efm/fcoil_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 101]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_(X)
- units :
- A
- uuid :
- 207705fc-6696-5ce4-ad58-cd7877f153d1
- version :
- 0
Array Chunk Bytes 47.34 kiB 47.34 kiB Shape (120, 101) (120, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_xmult(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Multiplier for each f-coil element to weight current within coil, e.g. by area; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil turns multiplier
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_XMULT
- name :
- efm/fcoil_xmult
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_XMULT
- units :
- deg
- uuid :
- bf17f6d0-ebb3-54c2-8165-81263ce29712
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcoil_z(fcoil_seg_n)float32dask.array<chunksize=(938,), meta=np.ndarray>
- description :
- Z centroid of each f-coil element; f(fcoil_segs_n)
- dims :
- ['fcoil_seg_n']
- file_name :
- None
- format :
- None
- label :
- f-Coil Location Height
- mds_name :
- \TOP.ANALYSED.EFM:FCOIL_Z
- name :
- efm/fcoil_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 938]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCOIL_Z
- units :
- m
- uuid :
- 6bdba7ed-4885-53b4-a447-287df37a06d7
- version :
- 0
Array Chunk Bytes 3.66 kiB 3.66 kiB Shape (938,) (938,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fcurbd()float32...
- description :
- ff' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- FFprime Boundary Conditi
- mds_name :
- \TOP.ANALYSED.EFM:FCURBD
- name :
- efm/fcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FCURBD
- units :
- uuid :
- 53d19c72-63f7-5fe3-97fc-6b75a0ae7774
- version :
- 0
[1 values with dtype=float32]
- ffprime(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- ff' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- ffprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:FFPRIME
- name :
- efm/ffprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME
- units :
- T-rad
- uuid :
- 0a96d037-3559-593b-82f7-2e556d7e0c12
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ffprime_coefs(time, ffprime_coefs_n)float32dask.array<chunksize=(120, 2), meta=np.ndarray>
- description :
- Coefficients of ff' profile representation
- dims :
- ['time', 'ffprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- FFPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM.FFPRIME_:COEFS
- name :
- efm/ffprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 2]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FFPRIME_COEFS
- units :
- uuid :
- 150e37f3-5911-53e2-a61b-efeccaf4e1f9
- version :
- 0
Array Chunk Bytes 0.94 kiB 0.94 kiB Shape (120, 2) (120, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - final_chisq(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Total chi-squared of fit; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Chi**2 (magnetic)
- mds_name :
- \TOP.ANALYSED.EFM:FINAL_CHISQ
- name :
- efm/final_chisq
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FINAL_CHISQ
- units :
- uuid :
- bc2ef894-0e46-53b0-bef8-3cbfcbed6941
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fpsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Poloidal current flux function, f=R*Bphi; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed f=R*B (centre t
- mds_name :
- \TOP.ANALYSED.EFM:F_PSI_C
- name :
- efm/fpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_F(PSI)_(C)
- units :
- T-m
- uuid :
- 9161e283-b5de-577a-8b43-12fe32c27a9a
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbdry(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Fit weights for LCFS position constraint
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- fwtpre
- mds_name :
- \TOP.ANALYSED.EFM:FWTBDRY
- name :
- efm/fwtbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBDRY
- units :
- uuid :
- 50ae3f95-f584-5fb1-a775-bfcec1c164da
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtbp()float32...
- description :
- Flag to make p' and ff' proportional
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime and FFPrime Propo
- mds_name :
- \TOP.ANALYSED.EFM:FWTBP
- name :
- efm/fwtbp
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTBP
- units :
- uuid :
- db3088a0-4664-556a-9dec-158a70b44f64
- version :
- 0
[1 values with dtype=float32]
- fwtfc(time, fcoil_n)float32dask.array<chunksize=(120, 101), meta=np.ndarray>
- description :
- f-coil circuit fit weights; f(fcoil_n)
- dims :
- ['time', 'fcoil_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of f-coils
- mds_name :
- \TOP.ANALYSED.EFM:FWTFC
- name :
- efm/fwtfc
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 101]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTFC
- units :
- uuid :
- 4d8df338-813b-5aa2-9b80-9cadfaab90a1
- version :
- 0
Array Chunk Bytes 47.34 kiB 47.34 kiB Shape (120, 101) (120, 101) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtmp(time, mag_probe_n)float32dask.array<chunksize=(120, 78), meta=np.ndarray>
- description :
- Magnetic detector fit weights; f(magpr_n)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of mag signal
- mds_name :
- \TOP.ANALYSED.EFM:FWTMP
- name :
- efm/fwtmp
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTMP
- units :
- uuid :
- d867bf4c-004b-518a-8ae6-58f9f946007f
- version :
- 0
Array Chunk Bytes 36.56 kiB 36.56 kiB Shape (120, 78) (120, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - fwtsi(time, psi_loop_n)float32dask.array<chunksize=(120, 46), meta=np.ndarray>
- description :
- Flux loop fit weights; f(silop_n)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- fit weight of flux loop
- mds_name :
- \TOP.ANALYSED.EFM:FWTSI
- name :
- efm/fwtsi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_FWTSI
- units :
- uuid :
- 4e5207b4-df12-5a14-aa56-8d9662cfd0eb
- version :
- 0
Array Chunk Bytes 21.56 kiB 21.56 kiB Shape (120, 46) (120, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_rc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- R of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Radius
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:R_C
- name :
- efm/geom_axis_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_R(C)
- units :
- m
- uuid :
- 0b863275-38f1-5797-91a8-300b8edebbad
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geom_axis_zc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Z of geometric axis of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Geometric Axis Height
- mds_name :
- \TOP.ANALYSED.EFM.GEOM_AXIS:Z_C
- name :
- efm/geom_axis_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GEOM_AXIS_Z(C)
- units :
- m
- uuid :
- 1650bb24-266a-5b26-b31e-ae66fc0a0e53
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridr(r)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- R grid for 2D outputs; f(nr)
- dims :
- ['r']
- file_name :
- None
- format :
- None
- label :
- r-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_R
- name :
- efm/gridr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(R)
- units :
- m
- uuid :
- 34781f9a-77cf-5bdb-beaf-e4ecfb17abfb
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - gridz(z)float32dask.array<chunksize=(65,), meta=np.ndarray>
- description :
- Z grid for 2D outputs; f(nz)
- dims :
- ['z']
- file_name :
- None
- format :
- None
- label :
- z-coordinates of computa
- mds_name :
- \TOP.ANALYSED.EFM:GRID_Z
- name :
- efm/gridz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_GRID(Z)
- units :
- m
- uuid :
- 2759e066-4fc8-5b78-adcb-1506ba57eb83
- version :
- 0
Array Chunk Bytes 260 B 260 B Shape (65,) (65,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ip_times(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- All times of attempted reconstruction for which plasma is present (time base C)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:IP_TIMES
- name :
- efm/ip_times
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IP_TIMES
- units :
- s
- uuid :
- 804edd94-4a95-5505-8128-4af4abe3fe06
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - irod(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Toroidal rod current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- toroidal rod current
- mds_name :
- \TOP.ANALYSED.EFM:IROD
- name :
- efm/irod
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_IROD
- units :
- A-T
- uuid :
- 4f8a32be-87d9-555d-990e-e8c50a7ec15b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - iteration_error(time, n_iterations)float32dask.array<chunksize=(120, 10), meta=np.ndarray>
- description :
- Goodness of convergence criterion for each iteration; f(num_iterations, B)
- dims :
- ['time', 'n_iterations']
- file_name :
- None
- format :
- None
- label :
- Iteration error
- mds_name :
- \TOP.ANALYSED.EFM.ITERATION:ERROR
- name :
- efm/iteration_error
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 10]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ITERATION_ERROR
- units :
- uuid :
- c7bd93f6-ea93-50ea-9da4-1ac9759fca14
- version :
- 0
Array Chunk Bytes 4.69 kiB 4.69 kiB Shape (120, 10) (120, 10) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - jr(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Toroidal plasma current density at Z=0 running from inboard to outboard in R; f(nr, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- Jphi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:J_R
- name :
- efm/jr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_J(R)
- units :
- uuid :
- fb15acc3-111c-5cc8-832f-ffa404f2b953
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - kffcur()float64...
- description :
- Number of ff' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of FFprime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KFFCUR
- name :
- efm/kffcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFCUR
- units :
- uuid :
- 06a92579-b79f-5ed3-9fb1-bdc52a6055ea
- version :
- 0
[1 values with dtype=float64]
- kfffnc()float64...
- description :
- ff' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KFFFNC
- name :
- efm/kfffnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KFFFNC
- units :
- uuid :
- 801fe189-9611-531a-b3bb-82214de39579
- version :
- 0
[1 values with dtype=float64]
- kppcur()float64...
- description :
- Number of p' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KPPCUR
- name :
- efm/kppcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPCUR
- units :
- uuid :
- b882f29f-03c4-51f7-9e24-9117233ffaea
- version :
- 0
[1 values with dtype=float64]
- kppfnc()float64...
- description :
- p' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KPPFNC
- name :
- efm/kppfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KPPFNC
- units :
- uuid :
- 76199b81-4383-5fb8-8051-89b3c3a2a69e
- version :
- 0
[1 values with dtype=float64]
- kwwcur()float64...
- description :
- Number of pw' coefficients
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of P(Rot) Coefs
- mds_name :
- \TOP.ANALYSED.EFM:KWWCUR
- name :
- efm/kwwcur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWCUR
- units :
- uuid :
- 3ac6bbe9-9dc4-5f92-acb6-fd03b83fe7e4
- version :
- 0
[1 values with dtype=float64]
- kwwfnc()float64...
- description :
- pw' basis function type
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Basis Function Number fo
- mds_name :
- \TOP.ANALYSED.EFM:KWWFNC
- name :
- efm/kwwfnc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_KWWFNC
- units :
- uuid :
- 2cdb3202-2673-52d5-9dc2-61336fbd77bb
- version :
- 0
[1 values with dtype=float64]
- lcfs_length(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Length of poloidal cross-section of LCFS; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- length of lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_LENGTH
- name :
- efm/lcfs_length
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS_LENGTH
- units :
- m
- uuid :
- 145b0375-51e5-5ff7-9817-074141ddd1b2
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_r(time, lcfs_coords)float32dask.array<chunksize=(120, 139), meta=np.ndarray>
- description :
- LCFS R coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- r-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_R_C
- name :
- efm/lcfsr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 2600]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(R)_(C)
- units :
- m
- uuid :
- 8350d289-b0a2-529f-86db-cdd15010357b
- version :
- 0
Array Chunk Bytes 65.16 kiB 65.16 kiB Shape (120, 139) (120, 139) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfs_z(time, lcfs_coords)float32dask.array<chunksize=(120, 139), meta=np.ndarray>
- description :
- LCFS Z coordinate values; f(nlcfs, B)
- dims :
- ['time', 'lcfs_coords']
- file_name :
- None
- format :
- None
- label :
- z-coords of separatrix
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_Z_C
- name :
- efm/lcfsz_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 2600]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(Z)_(C)
- units :
- m
- uuid :
- 2b09cd39-30b1-5690-84a4-97c84113cf78
- version :
- 0
Array Chunk Bytes 65.16 kiB 65.16 kiB Shape (120, 139) (120, 139) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lcfsn_c(time)float64dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Number of LCFS coordinate points; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- No. of coords on lcfs
- mds_name :
- \TOP.ANALYSED.EFM:LCFS_N_C
- name :
- efm/lcfsn_c
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LCFS(N)_(C)
- units :
- uuid :
- 9da2ea04-eaf6-54df-bdc2-d5da7add3191
- version :
- 0
Array Chunk Bytes 0.94 kiB 0.94 kiB Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - li(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Plasma internal inductance, vol avg (Bp^2) / surf avg (Bp)^2; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Inductance
- mds_name :
- \TOP.ANALYSED.EFM:LI
- name :
- efm/li
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LI
- units :
- uuid :
- 2c6fb39a-771b-5b0c-8d13-3b4bca9fa3b6
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterr(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- R co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Radius
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_R
- name :
- efm/limiterr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(R)
- units :
- m
- uuid :
- af7941be-e414-50ff-b798-ed5a8288b508
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - limiterz(limiter_n)float32dask.array<chunksize=(37,), meta=np.ndarray>
- description :
- Z co-ordinates of limiter; f(nlimiter)
- dims :
- ['limiter_n']
- file_name :
- None
- format :
- None
- label :
- Limiter Height
- mds_name :
- \TOP.ANALYSED.EFM:LIMITER_Z
- name :
- efm/limiterz
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 37]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_LIMITER(Z)
- units :
- m
- uuid :
- b9df63e9-af6d-58df-ad74-7abe9f6d4743
- version :
- 0
Array Chunk Bytes 148 B 148 B Shape (37,) (37,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_r(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- R co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_R
- name :
- efm/magnetic_axis_r
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_R
- units :
- m
- uuid :
- 9c1a8901-8263-5e31-8b0d-072f64e58cfc
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magnetic_axis_z(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Z co-ordinate of magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM.MAGNETIC:AXIS_Z
- name :
- efm/magnetic_axis_z
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGNETIC_AXIS_Z
- units :
- m
- uuid :
- a258de7d-08e8-5b00-b2ff-6c9e1b596a9a
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_ang(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining angular skew of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Angle
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_ANG
- name :
- efm/magpr_ang
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_ANG
- units :
- deg
- uuid :
- 04220b5a-0f50-5a58-babe-a40c4890fd14
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_c(time, mag_probe_n)float32dask.array<chunksize=(120, 78), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Computed magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_C
- name :
- efm/magpr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(C)
- units :
- T
- uuid :
- feb3bca4-fec0-593e-8357-5127390c924b
- version :
- 0
Array Chunk Bytes 36.56 kiB 36.56 kiB Shape (120, 78) (120, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_len(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Defining length of each magnetic field probe; f(magpr_n_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Length
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_LEN
- name :
- efm/magpr_len
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_LEN
- units :
- m
- uuid :
- d550be25-0d8a-5f3c-b4cc-e494c5bd445d
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_r(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- R of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_R
- name :
- efm/magpr_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_R
- units :
- m
- uuid :
- 171c76d5-cbfd-5530-9ac1-d85f1a445a1c
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_x(time, mag_probe_n)float32dask.array<chunksize=(120, 78), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic field probes; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Measured magnetic signal
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_X
- name :
- efm/magpr_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_(X)
- units :
- T
- uuid :
- 30240895-b515-51c4-b1a3-81ae3c41cd94
- version :
- 0
Array Chunk Bytes 36.56 kiB 36.56 kiB Shape (120, 78) (120, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpr_z(mag_probe_n)float32dask.array<chunksize=(78,), meta=np.ndarray>
- description :
- Z of each magnetic field probe; f(magpr_n)
- dims :
- ['mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Magnetic Probe Location
- mds_name :
- \TOP.ANALYSED.EFM:MAGPR_Z
- name :
- efm/magpr_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPR_Z
- units :
- m
- uuid :
- c2943928-5193-54ef-9eb8-f99391814c6b
- version :
- 0
Array Chunk Bytes 312 B 312 B Shape (78,) (78,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - magpri_chisq(time, mag_probe_n)float32dask.array<chunksize=(120, 78), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic field probe; f(magpr_n, A)
- dims :
- ['time', 'mag_probe_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each magnetic
- mds_name :
- \TOP.ANALYSED.EFM:MAGPRI_CHISQ
- name :
- efm/magpri_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 78]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MAGPRI_CHISQ
- units :
- uuid :
- cff3d158-e8c2-5ab3-880e-b893bf69dc4a
- version :
- 0
Array Chunk Bytes 36.56 kiB 36.56 kiB Shape (120, 78) (120, 78) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - minor_radius(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Minor radius of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Minor Radius
- mds_name :
- \TOP.ANALYSED.EFM:MINOR_RADIUS
- name :
- efm/minor_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_MINOR_RADIUS
- units :
- m
- uuid :
- 6eb85bbc-76a0-54a9-a8dc-5ea444791358
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - nh()float64...
- description :
- Number of vertical grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NH
- name :
- efm/nh
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NH
- units :
- uuid :
- 241de5f3-7a6e-5b91-a778-a93c4fd95025
- version :
- 0
[1 values with dtype=float64]
- npress()float64...
- description :
- Number of pressure constraints
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- No. of pressure constrai
- mds_name :
- \TOP.ANALYSED.EFM:NPRESS
- name :
- efm/npress
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NPRESS
- units :
- uuid :
- 4671fb83-b847-5ef7-9af7-b9093be82606
- version :
- 0
[1 values with dtype=float64]
- num_iterations(time)float64dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Number of iterations; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- number of iterations
- mds_name :
- \TOP.ANALYSED.EFM.NUM:ITERATIONS
- name :
- efm/num_iterations
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NUM_ITERATIONS
- units :
- uuid :
- bceaf792-7ee1-50e7-8584-ee7baeb6e757
- version :
- 0
Array Chunk Bytes 0.94 kiB 0.94 kiB Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - nw()float64...
- description :
- Number of horizontal grid points
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Number of grid points in
- mds_name :
- \TOP.ANALYSED.EFM:NW
- name :
- efm/nw
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_NW
- units :
- uuid :
- b1cb9f24-f49b-5894-9269-9ff3552c3055
- version :
- 0
[1 values with dtype=float64]
- p2ar_c(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Non-rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (non-rotational par
- mds_name :
- \TOP.ANALYSED.EFM:P2A_R_C
- name :
- efm/p2ar_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2A(R)_(C)
- units :
- Pa
- uuid :
- 4bbda7c8-0d0b-5682-b998-4dff45c5cc94
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2br_c(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Coefficient of rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- pw(r) (rotational part)
- mds_name :
- \TOP.ANALYSED.EFM:P2B_R_C
- name :
- efm/p2br_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2B(R)_(C)
- units :
- Pa
- uuid :
- dec0439e-f2cb-585e-b264-b9f4fc17af68
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - p2cr_c(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Rotational pressure contribution as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- contribution of pw(r) to
- mds_name :
- \TOP.ANALYSED.EFM:P2C_R_C
- name :
- efm/p2cr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P2C(R)_(C)
- units :
- Pa
- uuid :
- 8c5c0448-3a31-5060-aefc-8db73151c898
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - passnumber()float64...
- description :
- MAST scheduler pass number
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- Pass
- mds_name :
- \TOP.ANALYSED.EFM:PASSNUMBER
- name :
- efm/passnumber
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PASSNUMBER
- units :
- uuid :
- 2fe60acc-722e-5e8d-afe1-e8367fceb802
- version :
- 0
[1 values with dtype=float64]
- pcurbd()float32...
- description :
- p' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- PPrime Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:PCURBD
- name :
- efm/pcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PCURBD
- units :
- uuid :
- 8068377c-e5e3-5d88-85f9-8249c770341c
- version :
- 0
[1 values with dtype=float32]
- plasma_area(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Area of poloidal cross-section of plasma; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Area
- mds_name :
- \TOP.ANALYSED.EFM:PLASMA_AREA
- name :
- efm/plasma_area
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_AREA
- units :
- m ** 2
- uuid :
- 235259d9-f352-5fe3-adc1-c8388c59d9d0
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_c(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Output (computed) fitted total plasma current; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Computed Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:C
- name :
- efm/plasma_currc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(C)
- units :
- A
- uuid :
- 311ac948-1f9c-5e24-a0e5-6fc2eb5af81e
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_rz(time, z, r)float32dask.array<chunksize=(60, 33, 33), meta=np.ndarray>
- description :
- Plasma current density as a function of R and Z; f(nw, nh, B)
- dims :
- ['time', 'z', 'r']
- file_name :
- None
- format :
- None
- label :
- J(r,z)
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:R_Z
- name :
- efm/plasma_currrz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [108, 65, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(R,Z)
- units :
- A / m ** 2
- uuid :
- 13598fc0-34e1-5c01-9085-2b83378bdecc
- version :
- 0
Array Chunk Bytes 1.93 MiB 255.23 kiB Shape (120, 65, 65) (60, 33, 33) Dask graph 8 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_current_x(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Input (experimental) fitted total plasma current; f(A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Measured Plasma Current
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA_CURR:X
- name :
- efm/plasma_currx
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_CURR(X)
- units :
- A
- uuid :
- 1cde371e-86ad-57f6-a093-317ebe7d7ba0
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_energy(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Plasma thermal energy; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Thermal Energy:3/
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:ENERGY
- name :
- efm/plasma_energy
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_ENERGY
- units :
- J
- uuid :
- b1389cfd-07eb-56da-8bdc-7ab7d6325c34
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - plasma_volume(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Plasma volume; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Volume
- mds_name :
- \TOP.ANALYSED.EFM.PLASMA:VOLUME
- name :
- efm/plasma_volume
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PLASMA_VOLUME
- units :
- m ** 3
- uuid :
- ef479c43-a6dc-59d5-9ec8-ebbf445f6800
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pol_length(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Poloidal lengths of flux surfaces as a function of flux; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pol lengths of flux surf
- mds_name :
- \TOP.ANALYSED.EFM:POL_LENGTH
- name :
- efm/pol_length
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_POL_LENGTH
- units :
- m
- uuid :
- 373bb482-5ed9-501b-b2ae-18e5fbad7277
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- p' profile; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- pprime (centre to edge)
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME
- name :
- efm/pprime
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME
- units :
- Pa-rad/Wb
- uuid :
- c9be4988-73f9-5876-82c9-3a6c22633105
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprime_coefs(time, pprime_coefs_n)float32dask.array<chunksize=(120, 2), meta=np.ndarray>
- description :
- p' polynomial coefficients
- dims :
- ['time', 'pprime_coefs_n']
- file_name :
- None
- format :
- None
- label :
- PPrime Coefs
- mds_name :
- \TOP.ANALYSED.EFM:PPRIME_COEFS
- name :
- efm/pprime_coefs
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 2]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIME_COEFS
- units :
- uuid :
- 0578c023-3682-533f-a8e7-edcf6f85213c
- version :
- 0
Array Chunk Bytes 0.94 kiB 0.94 kiB Shape (120, 2) (120, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pprimew(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Rotational pressure contribution profile; f(nw, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- prpime(rot) (centre to e
- mds_name :
- \TOP.ANALYSED.EFM:PPRIMEW
- name :
- efm/pprimew
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PPRIMEW
- units :
- Pa-ra/Wb
- uuid :
- 5b347068-92d5-5cfa-86a0-97b4bdcfac44
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ppsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Pressure as a function of flux surface; f(psin, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed press (centre t
- mds_name :
- \TOP.ANALYSED.EFM:P_PSI_C
- name :
- efm/ppsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(PSI)_(C)
- units :
- Pa
- uuid :
- cfed1cf3-ff15-547e-ad0e-cd24197aaac6
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - pr_c(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Pressure as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- p(r) (total)
- mds_name :
- \TOP.ANALYSED.EFM:P_R_C
- name :
- efm/pr_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_P(R)_(C)
- units :
- Pa
- uuid :
- 63c9f9a7-ee94-5dff-a805-a88b4c9c193b
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_axis(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux on axis
- mds_name :
- \TOP.ANALYSED.EFM:PSI_AXIS
- name :
- efm/psi_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_AXIS
- units :
- Wb / rad
- uuid :
- be551547-8c43-58de-9cd5-0a1a9fdf91a4
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psi_boundary(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian at the plasma boundary; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Poloidal flux at boundar
- mds_name :
- \TOP.ANALYSED.EFM:PSI_BOUNDARY
- name :
- efm/psi_boundary
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI_BOUNDARY
- units :
- Wb / rad
- uuid :
- 52e56be0-f38a-51af-9e36-3c8e7bd5011f
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psir(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius at Z=0; f(nw, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R
- name :
- efm/psir
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R)
- units :
- uuid :
- 5a668ed3-120a-5f6c-90b9-2dda78b70868
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - psirz(time, profile_z, profile_r)float32dask.array<chunksize=(60, 33, 65), meta=np.ndarray>
- description :
- Poloidal magnetic flux per toroidal radian as a function of radius and height; f(nw, nh, B)
- dims :
- ['time', 'profile_z', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- psi(r,z)
- mds_name :
- \TOP.ANALYSED.EFM:PSI_R_Z
- name :
- efm/psirz
- quality :
- Not Checked
- rank :
- 3
- shape :
- [120, 65, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PSI(R,Z)
- units :
- Wb / rad
- uuid :
- 61aac2ef-845b-533e-948f-25f824fb52c1
- version :
- 0
Array Chunk Bytes 3.84 MiB 502.73 kiB Shape (120, 65, 129) (60, 33, 65) Dask graph 8 chunks in 2 graph layers Data type float32 numpy.ndarray - pwpsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Rotational pressure flux function p_omega as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- computed rotational pres
- mds_name :
- \TOP.ANALYSED.EFM:PW_PSI_C
- name :
- efm/pwpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_PW(PSI)_(C)
- units :
- Pa
- uuid :
- 63c30edb-c731-56ac-a331-08a6e81bc39b
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=1_radius(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- For q=1 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=1 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_1_RADIUS
- name :
- efm/q=1_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=1_RADIUS
- units :
- m
- uuid :
- 400fd9a4-6deb-505b-a50c-465672891b2b
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=2_radius(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- For q=2 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=2 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_2_RADIUS
- name :
- efm/q=2_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=2_RADIUS
- units :
- m
- uuid :
- 871c0ff2-5bef-5853-84a3-7dae637e7ade
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q=3_radius(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- For q=3 surface: (R_max-R_min)/2 at Z=Z_mag; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- radius of q=3 surface
- mds_name :
- \TOP.ANALYSED.EFM:Q_3_RADIUS
- name :
- efm/q=3_radius
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q=3_RADIUS
- units :
- m
- uuid :
- 5bab7617-392d-5185-a3a3-414d798b512c
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_100(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Safety factor at 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=100%
- mds_name :
- \TOP.ANALYSED.EFM:Q_100
- name :
- efm/q_100
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_100
- units :
- uuid :
- 80c43241-a943-52da-8c9f-a0edb7ee90d0
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_90(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Safety factor at 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=90%
- mds_name :
- \TOP.ANALYSED.EFM:Q_90
- name :
- efm/q_90
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_90
- units :
- uuid :
- 6254a647-0ad1-59f2-8a82-25aba2e017a0
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_95(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Safety factor at 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q at Psi_norm=95%
- mds_name :
- \TOP.ANALYSED.EFM:Q_95
- name :
- efm/q_95
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_95
- units :
- uuid :
- 20b9d6da-3f05-5671-bd87-ec11e8c64c9c
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q_axis(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Safety factor at the magnetic axis; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q on Magnetic Axis
- mds_name :
- \TOP.ANALYSED.EFM:Q_AXIS
- name :
- efm/q_axis
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q_AXIS
- units :
- uuid :
- 84b07aac-c4d5-5177-ad49-663225590bad
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qpsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Safety factor as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- q-profile (centre to edg
- mds_name :
- \TOP.ANALYSED.EFM:Q_PSI_C
- name :
- efm/qpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(PSI)_(C)
- units :
- uuid :
- 028f3486-3e95-542e-97cb-0f276766d7f4
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qr(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Safety factor as a function of radius at Z=0; f(npsi, B)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- q(r) at z=0.
- mds_name :
- \TOP.ANALYSED.EFM:Q_R
- name :
- efm/qr
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_Q(R)
- units :
- uuid :
- 342414f1-8c27-5241-ae04-ab4dbd6e9516
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - qstar(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- qstar = fvac*(kappa^2+1)/(4e-7 I_p A^2)*(1.24-0.54*kappa+0.3*(kappa^2+triangn^2)+0.13*triangn )*(1 + (1+0.5*(betap+li/2)^2)/A^2); f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- q-star
- mds_name :
- \TOP.ANALYSED.EFM:QSTAR
- name :
- efm/qstar
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_QSTAR
- units :
- uuid :
- fcb75577-feba-5980-b3fc-ec00332561b7
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rbdry(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Radius of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- rbdry
- mds_name :
- \TOP.ANALYSED.EFM:RBDRY
- name :
- efm/rbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RBDRY
- units :
- m
- uuid :
- 511eabe6-6f5a-5635-8ee4-1ada2740c37a
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_in(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Inboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_IN
- name :
- efm/rpsi100_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_IN
- units :
- m
- uuid :
- 93d8b95b-b771-5f43-9bcc-3afcdee57c2d
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi100_out(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Outboard radius of 100% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of lcfs at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI100_OUT
- name :
- efm/rpsi100_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI100)_OUT
- units :
- m
- uuid :
- 162fb99e-9121-5b3f-a304-ef8eaa2a1103
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_in(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Inboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_IN
- name :
- efm/rpsi90_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_IN
- units :
- m
- uuid :
- 54c5542c-a181-50a4-b3e3-e6970712af87
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi90_out(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Outboard radius of 90% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 90%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI90_OUT
- name :
- efm/rpsi90_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI90)_OUT
- units :
- m
- uuid :
- 5b52f20f-44b9-5f92-9934-c4c0540adb93
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_in(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Inboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- i/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_IN
- name :
- efm/rpsi95_in
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_IN
- units :
- m
- uuid :
- 03fd4bfe-c2bc-5c07-92f0-287e026eb77f
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rpsi95_out(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Outboard radius of 95% normalised magnetic flux; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- o/b Rad of 95%Psi at Mid
- mds_name :
- \TOP.ANALYSED.EFM:R_PSI95_OUT
- name :
- efm/rpsi95_out
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_R(PSI95)_OUT
- units :
- m
- uuid :
- e38b1e77-2280-5275-a91b-6d652a62a491
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rt(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Shafranov integral RT
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_RT
- mds_name :
- \TOP.ANALYSED.EFM:RT
- name :
- efm/rt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RT
- units :
- m
- uuid :
- 4d70b47a-9cd1-5d5e-87e4-225704fa2324
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvals(time, profile_r)float32dask.array<chunksize=(120, 129), meta=np.ndarray>
- description :
- Radial co-ordinates used for radial profiles; f(nw)
- dims :
- ['time', 'profile_r']
- file_name :
- None
- format :
- None
- label :
- R-coords used for radial
- mds_name :
- \TOP.ANALYSED.EFM:RVALS
- name :
- efm/rvals
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVALS
- units :
- uuid :
- 1e72020e-45d9-580c-81e1-3d19f707fd17
- version :
- 0
Array Chunk Bytes 60.47 kiB 60.47 kiB Shape (120, 129) (120, 129) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rvtor()float32...
- description :
- Rotational pressure parameter
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- rotational constraint co
- mds_name :
- \TOP.ANALYSED.EFM:RVTOR
- name :
- efm/rvtor
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_RVTOR
- units :
- uuid :
- 05ae8a4b-5939-5245-829a-59641aa44b67
- version :
- 0
[1 values with dtype=float32]
- scalepr()float32...
- description :
- Constant to scale input pressure by
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- pressure scaling factor
- mds_name :
- \TOP.ANALYSED.EFM:SCALEPR
- name :
- efm/scalepr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SCALEPR
- units :
- uuid :
- 4e9e89ba-ab96-5a77-b89e-fba8c1166211
- version :
- 0
[1 values with dtype=float32]
- shaf_integral_1(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Shafranov integral 1
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_1
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_1
- name :
- efm/shaf_integral_1
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_1
- units :
- uuid :
- d791e28e-b10a-5399-ba8f-217138769436
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_2(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Shafranov integral 2
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_2
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_2
- name :
- efm/shaf_integral_2
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_2
- units :
- uuid :
- da159aaa-0611-537a-9b38-fda608495282
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - shaf_integral_3(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Shafranov integral 3
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- shafranov_integral_3
- mds_name :
- \TOP.ANALYSED.EFM.SHAF:INTEGRAL_3
- name :
- efm/shaf_integral_3
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SHAF_INTEGRAL_3
- units :
- uuid :
- 48b890ab-0eee-5aa5-a5bd-ee8e7397fa17
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - sigbdry(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Relative position error on boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- sigbdry
- mds_name :
- \TOP.ANALYSED.EFM:SIGBDRY
- name :
- efm/sigbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SIGBDRY
- units :
- uuid :
- fae5fd3f-cc2b-5f3d-b60a-8dfdef8fcca9
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_c(time, psi_loop_n)float32dask.array<chunksize=(120, 46), meta=np.ndarray>
- description :
- Output (computed) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Computed flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_C
- name :
- efm/silop_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(C)
- units :
- Wb
- uuid :
- b2d05665-e531-5c51-a394-e39959a597c1
- version :
- 0
Array Chunk Bytes 21.56 kiB 21.56 kiB Shape (120, 46) (120, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_chisq(time, psi_loop_n)float32dask.array<chunksize=(120, 46), meta=np.ndarray>
- description :
- Chi-squared of each fitted magnetic flux probe; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Chi**2 of each flux loop
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_CHISQ
- name :
- efm/silop_chisq
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_CHISQ
- units :
- uuid :
- f2736385-810c-593f-99dc-d7a9c519dc2e
- version :
- 0
Array Chunk Bytes 21.56 kiB 21.56 kiB Shape (120, 46) (120, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_dphi(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Toroidal angular extent of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Toroidal Exten
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_DPHI
- name :
- efm/silop_dphi
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_DPHI
- units :
- m
- uuid :
- 45aed29f-5bc0-5760-a524-95c847a76c9c
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_r(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- R of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Radiu
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_R
- name :
- efm/silop_r
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_R
- units :
- m
- uuid :
- d961457f-5de1-5027-b613-bbb766d28731
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_x(time, psi_loop_n)float32dask.array<chunksize=(120, 46), meta=np.ndarray>
- description :
- Input (experimental) fitted magnetic flux probes; f(silop_n, A)
- dims :
- ['time', 'psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Measured flux loops sign
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_X
- name :
- efm/silop_x
- quality :
- Not Checked
- rank :
- 2
- shape :
- [120, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_(X)
- units :
- Wb
- uuid :
- 1d9aea56-f1f6-506a-80a7-ec3d092b7e90
- version :
- 0
Array Chunk Bytes 21.56 kiB 21.56 kiB Shape (120, 46) (120, 46) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - silop_z(psi_loop_n)float32dask.array<chunksize=(46,), meta=np.ndarray>
- description :
- Z of each magnetic flux probe; f(magpr_n)
- dims :
- ['psi_loop_n']
- file_name :
- None
- format :
- None
- label :
- Flux Loop Location Heigh
- mds_name :
- \TOP.ANALYSED.EFM:SILOP_Z
- name :
- efm/silop_z
- quality :
- Not Checked
- rank :
- 2
- shape :
- [1, 46]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_SILOP_Z
- units :
- m
- uuid :
- bdb0676a-593f-5520-9ff7-10059d209c32
- version :
- 0
Array Chunk Bytes 184 B 184 B Shape (46,) (46,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - status()float64...
- description :
- MAST scheduler status
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- MAST Status flag
- mds_name :
- \TOP.ANALYSED.EFM:STATUS
- name :
- efm/status
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_STATUS
- units :
- uuid :
- 118b8444-3f20-5eae-a29f-7ec75df03f89
- version :
- 0
[1 values with dtype=float64]
- time_(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- All times of converged reconstruction (time base B) - identical to EFM_CNVRGD_TIMES
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time of reconstruction
- mds_name :
- \TOP.ANALYSED.EFM:TIME
- name :
- efm/time_
- quality :
- Not Checked
- rank :
- 1
- shape :
- [120]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TIME
- units :
- s
- uuid :
- 7528c60d-a518-5960-9971-b1f8ba11b569
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lower(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Lower plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Lower Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_LOWER
- name :
- efm/triang_lower
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_LOWER
- units :
- uuid :
- 4f674bd5-c241-5745-9949-f83fd7cb13f3
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_lpsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Lower plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- lower delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_L:PSI_C
- name :
- efm/triang_lpsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_L(PSI)_(C)
- units :
- uuid :
- c8b31c10-75bd-5bc2-b66e-ee8b6601e21b
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upper(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Upper plasma triangularity; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Upper Triangularity
- mds_name :
- \TOP.ANALYSED.EFM:TRIANG_UPPER
- name :
- efm/triang_upper
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_UPPER
- units :
- uuid :
- c884042c-2531-5f6f-b7a6-7c02af1f73ae
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - triang_upsi_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Upper plasma triangularity as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- upper delta of surfaces
- mds_name :
- \TOP.ANALYSED.EFM.TRIANG_U:PSI_C
- name :
- efm/triang_upsi_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_TRIANG_U(PSI)_(C)
- units :
- uuid :
- 013c76cd-97cb-59fb-919d-52c206cbc65d
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - volp_c(time, psi_norm)float32dask.array<chunksize=(120, 65), meta=np.ndarray>
- description :
- Plasma volume enclosed by flux surfaces as a function of magnetic flux; f(npsi, B)
- dims :
- ['time', 'psi_norm']
- file_name :
- None
- format :
- None
- label :
- vol within psi surfaces
- mds_name :
- \TOP.ANALYSED.EFM:VOLP_C
- name :
- efm/volp_c
- quality :
- Not Checked
- rank :
- 2
- shape :
- [108, 65]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_VOLP_(C)
- units :
- m ** 3
- uuid :
- 341ca544-4567-5797-a5b9-9165aadce439
- version :
- 0
Array Chunk Bytes 30.47 kiB 30.47 kiB Shape (120, 65) (120, 65) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wcurbd()float32...
- description :
- pw' polynomial fit boundary condition; 1 for zero at psin=1, 0 for free
- dims :
- []
- file_name :
- None
- format :
- None
- label :
- P(Rot) Boundary Conditio
- mds_name :
- \TOP.ANALYSED.EFM:WCURBD
- name :
- efm/wcurbd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WCURBD
- units :
- uuid :
- bdaccd35-f31a-5758-a38a-dc5690960ec8
- version :
- 0
[1 values with dtype=float32]
- wplasmd(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Plasma energy computed using diamagnetic energy, as in betapd
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Plasma Diamagnetic Energ
- mds_name :
- \TOP.ANALYSED.EFM:WPLASMD
- name :
- efm/wplasmd
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPLASMD
- units :
- J
- uuid :
- 344d8e78-c94a-53d2-a2e4-f1fc9b038d82
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - wpol(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Poloidal part of magnetic energy in plasma; vol avg Bp^2 / 2 mu0; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Wpol
- mds_name :
- \TOP.ANALYSED.EFM:WPOL
- name :
- efm/wpol
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_WPOL
- units :
- J
- uuid :
- d5a98102-0c6d-5e94-a359-e12f80200ce7
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_rc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Radius of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_R_C
- name :
- efm/xpoint1_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_R(C)
- units :
- m
- uuid :
- 77f7e16b-6b44-597e-bde4-450fabfe9cd7
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint1_zc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Height of first X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 1
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT1_Z_C
- name :
- efm/xpoint1_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT1_Z(C)
- units :
- m
- uuid :
- 5a5ae517-d8a9-54cb-9734-14949e0ad9f7
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_rc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Radius of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Radius of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_R_C
- name :
- efm/xpoint2_rc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_R(C)
- units :
- m
- uuid :
- 4896be18-1a48-533e-a8a4-0f987d33bf9d
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xpoint2_zc(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Height of second X-point; f(B)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Height of X-point 2
- mds_name :
- \TOP.ANALYSED.EFM:XPOINT2_Z_C
- name :
- efm/xpoint2_zc
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_XPOINT2_Z(C)
- units :
- m
- uuid :
- da127eed-d89a-5340-82d5-a7614265e525
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - zbdry(time)float32dask.array<chunksize=(120,), meta=np.ndarray>
- description :
- Height of boundary position constraints; f(nbdry, A)
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- zbdry
- mds_name :
- \TOP.ANALYSED.EFM:ZBDRY
- name :
- efm/zbdry
- quality :
- Not Checked
- rank :
- 1
- shape :
- [108]
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- time_index :
- 0
- uda_name :
- EFM_ZBDRY
- units :
- m
- uuid :
- b4329365-be20-5d3a-b72b-568726ddc033
- version :
- 0
Array Chunk Bytes 480 B 480 B Shape (120,) (120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- fcoil_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0], dtype='float32', name='fcoil_n', length=101))
- ffprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='ffprime_coefs_n'))
- lcfs_coordsPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ... 129.0, 130.0, 131.0, 132.0, 133.0, 134.0, 135.0, 136.0, 137.0, 138.0], dtype='float32', name='lcfs_coords', length=139))
- mag_probe_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0], dtype='float32', name='mag_probe_n'))
- n_iterationsPandasIndex
PandasIndex(Index([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype='float32', name='n_iterations'))
- pprime_coefs_nPandasIndex
PandasIndex(Index([0.0, 1.0], dtype='float32', name='pprime_coefs_n'))
- profile_rPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.05999999865889549, 0.0625, 0.078125, 0.09031249582767487, 0.09375, 0.109375, ... 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='profile_r', length=129))
- profile_zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='profile_z'))
- psi_loop_nPandasIndex
PandasIndex(Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0], dtype='float32', name='psi_loop_n'))
- psi_normPandasIndex
PandasIndex(Index([ 0.0, 0.015625, 0.03125, 0.046875, 0.0625, 0.078125, 0.09375, 0.109375, 0.125, 0.140625, 0.15625, 0.171875, 0.1875, 0.203125, 0.21875, 0.234375, 0.25, 0.265625, 0.28125, 0.296875, 0.3125, 0.328125, 0.34375, 0.359375, 0.375, 0.390625, 0.40625, 0.421875, 0.4375, 0.453125, 0.46875, 0.484375, 0.5, 0.515625, 0.53125, 0.546875, 0.5625, 0.578125, 0.59375, 0.609375, 0.625, 0.640625, 0.65625, 0.671875, 0.6875, 0.703125, 0.71875, 0.734375, 0.75, 0.765625, 0.78125, 0.796875, 0.8125, 0.828125, 0.84375, 0.859375, 0.875, 0.890625, 0.90625, 0.921875, 0.9375, 0.953125, 0.96875, 0.984375, 1.0], dtype='float32', name='psi_norm'))
- rPandasIndex
PandasIndex(Index([0.05999999865889549, 0.09031249582767487, 0.12062500417232513, 0.1509374976158142, 0.18125000596046448, 0.21156251430511475, 0.24187500774860382, 0.2721875011920929, 0.30250000953674316, 0.33281251788139343, 0.3631250262260437, 0.3934375047683716, 0.42375001311302185, 0.4540625214576721, 0.484375, 0.5146874785423279, 0.5450000166893005, 0.5753124952316284, 0.6056250333786011, 0.635937511920929, 0.6662500500679016, 0.6965625286102295, 0.7268750071525574, 0.75718754529953, 0.7875000238418579, 0.8178125023841858, 0.8481250405311584, 0.8784375190734863, 0.9087499976158142, 0.9390625357627869, 0.9693750143051147, 0.9996875524520874, 1.0299999713897705, 1.0603125095367432, 1.0906249284744263, 1.120937466621399, 1.1512500047683716, 1.1815624237060547, 1.2118749618530273, 1.2421875, 1.2725000381469727, 1.3028124570846558, 1.3331249952316284, 1.363437533378601, 1.3937499523162842, 1.4240624904632568, 1.4543750286102295, 1.4846874475479126, 1.5149999856948853, 1.545312523841858, 1.575624942779541, 1.6059374809265137, 1.6362500190734863, 1.6665624380111694, 1.696874976158142, 1.7271875143051147, 1.7574999332427979, 1.7878124713897705, 1.8181250095367432, 1.8484375476837158, 1.878749966621399, 1.9090625047683716, 1.9393750429153442, 1.9696874618530273, 2.0], dtype='float32', name='r'))
- timePandasIndex
PandasIndex(Index([ -0.04999999701976776, -0.044999998062849045, -0.03999999910593033, -0.03500000014901161, -0.029999999329447746, -0.02499999850988388, -0.019999999552965164, -0.014999999664723873, -0.009999999776482582, -0.004999999888241291, ... 0.5249999761581421, 0.5299999713897705, 0.5349999666213989, 0.5399999618530273, 0.5449999570846558, 0.550000011920929, 0.5550000071525574, 0.5600000023841858, 0.5649999976158142, 0.5999999642372131], dtype='float32', name='time', length=120))
- zPandasIndex
PandasIndex(Index([ -2.0, -1.9375, -1.875, -1.8125, -1.75, -1.6875, -1.625, -1.5625, -1.5, -1.4375, -1.375, -1.3125, -1.25, -1.1875, -1.125, -1.0625, -1.0, -0.9375, -0.875, -0.8125, -0.75, -0.6875, -0.625, -0.5625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.625, 1.6875, 1.75, 1.8125, 1.875, 1.9375, 2.0], dtype='float32', name='z'))
- description :
- Basic EFIT
- file_name :
- efm0304.21
- format :
- IDA3
- mds_name :
- None
- name :
- efm
- quality :
- Not Checked
- shot_id :
- 30421
- signal_type :
- Analysed
- source :
- efm
- uda_name :
- EFM
- uuid :
- e75f0185-8b80-58f7-a1dd-5f7fc4659a12
- version :
- 0
Below we show how to load and plot the plasma current denisty and with the last closed flux surface (LCFS).
d = dataset['plasma_current_rz'].dropna(dim='time')
r = dataset['r']
z = dataset['z']
lcfs_R = dataset['lcfs_r'].sel(time=d.time)
lcfs_Z = dataset['lcfs_z'].sel(time=d.time)
R, Z = np.meshgrid(r, z)
index = 50
# Get the x-point
xpoint_r = dataset['xpoint1_rc'][index]
xpoint_z = dataset['xpoint1_zc'][index]
# Get the current centre
mag_axis_r = dataset['current_centrd_r'][index]
mag_axis_z = dataset['current_centrd_z'][index]
# Get the last closed flux surface (LCFS)
lcfs_r = lcfs_R[index].values
lcfs_r = lcfs_r[~np.isnan(lcfs_r)]
lcfs_z = lcfs_Z[index].values
lcfs_z = lcfs_z[~np.isnan(lcfs_z)]
fig, ax = plt.subplots()
ax.contourf(R, Z, d[index], cmap='magma', levels=20, label='Plasma Current')
ax.plot(lcfs_r, lcfs_z, c='red', linestyle='--', label='LCFS')
ax.scatter(xpoint_r, xpoint_z, marker='x', color='green', label='X Point')
ax.scatter(mag_axis_r, mag_axis_z, marker='o', color='purple', label='Current Centre')
plt.title(f'EFIT Plasma Current & LCFS for Shot {d.attrs["shot_id"]}')
plt.ylabel('Z (m)')
plt.xlabel('R (m)')
plt.legend()
/var/folders/xr/yr8z575s52b4tbg3fj65qwx00000gp/T/ipykernel_17185/3855999503.py:28: UserWarning: The following kwargs were not used by contour: 'label'
ax.contourf(R, Z, d[index], cmap='magma', levels=20, label='Plasma Current')
<matplotlib.legend.Legend at 0x36784d610>

Mirnov Coils#
Mirnov coils are primarily used to measure magnetic fluctuations in the plasma. These fluctuations can provide important information about various plasma instabilities.
They are particularly useful for studying magnetohydrodynamic (MHD) phenomena. MHD activity includes various modes of instabilities, such as kink modes and tearing modes, which can affect plasma confinement and stability.
dataset = xr.open_zarr("https://s3.echo.stfc.ac.uk/mast/level1/shots/29790.zarr", group='xmo')
dataset
<xarray.Dataset> Size: 101MB Dimensions: (dim_0: 16, dim_1: 2, time: 1400000) Coordinates: * dim_0 (dim_0) int32 64B 0 1 2 3 4 ... 12 13 14 15 * dim_1 (dim_1) int32 8B 0 1 * time (time) float64 11MB -0.1 -0.1 ... 0.6 0.6 Data variables: (12/18) devices_d3_acq216_025_channel (dim_0) int32 64B dask.array<chunksize=(16,), meta=np.ndarray> devices_d3_acq216_025_range (dim_0, dim_1) float32 128B dask.array<chunksize=(16, 2), meta=np.ndarray> devices_limit (dim_0) float64 128B dask.array<chunksize=(16,), meta=np.ndarray> omaha_1lz (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_2lt (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_2lz (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> ... ... omaha_5lz (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5ur (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5ut (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_5uz (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> omaha_6lz (time) float32 6MB dask.array<chunksize=(87500,), meta=np.ndarray> time1 (time) float64 11MB dask.array<chunksize=(87500,), meta=np.ndarray> Attributes: description: Magnetic Field Measurements: OMAHA high frequency Mirnov co... file_name: xmo029790.nc format: CDF mds_name: None name: xmo quality: Not Checked shot_id: 29790 signal_type: Raw source: xmo uda_name: XMO uuid: ff541ac3-6b1c-5373-8d33-b85fd46bc75b version: -1
- dim_0: 16
- dim_1: 2
- time: 1400000
- dim_0(dim_0)int320 1 2 3 4 5 6 ... 10 11 12 13 14 15
- units :
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int32)
- dim_1(dim_1)int320 1
- units :
array([0, 1], dtype=int32)
- time(time)float64-0.1 -0.1 -0.1 -0.1 ... 0.6 0.6 0.6
- units :
- s
array([-0.1 , -0.099999, -0.099999, ..., 0.599998, 0.599999, 0.599999])
- devices_d3_acq216_025_channel(dim_0)int32dask.array<chunksize=(16,), meta=np.ndarray>
- description :
- dims :
- ['dim_0']
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.RAW.XMO.DEVICES_D3.ACQ216_025:CHANNEL
- name :
- xmo/devices_d3_acq216_025_channel
- quality :
- Not Checked
- rank :
- 1
- shape :
- [16]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/D3_ACQ216_025/CHANNEL
- units :
- uuid :
- b8dfcfeb-7532-5744-a051-05b03e011a92
- version :
- -1
Array Chunk Bytes 64 B 64 B Shape (16,) (16,) Dask graph 1 chunks in 2 graph layers Data type int32 numpy.ndarray - devices_d3_acq216_025_range(dim_0, dim_1)float32dask.array<chunksize=(16, 2), meta=np.ndarray>
- description :
- dims :
- ['dim_0', 'dim_1']
- file_name :
- None
- format :
- None
- label :
- /devices/d3_acq216_025/range
- mds_name :
- \TOP.RAW.XMO.DEVICES_D3.ACQ216_025:RANGE
- name :
- xmo/devices_d3_acq216_025_range
- quality :
- Not Checked
- rank :
- 2
- shape :
- [16, 2]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/D3_ACQ216_025/RANGE
- units :
- uuid :
- c25d1fcf-4905-53e5-8ab2-ecbb6ed40216
- version :
- -1
Array Chunk Bytes 128 B 128 B Shape (16, 2) (16, 2) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - devices_limit(dim_0)float64dask.array<chunksize=(16,), meta=np.ndarray>
- description :
- dims :
- ['dim_0']
- file_name :
- None
- format :
- None
- label :
- mds_name :
- \TOP.RAW.XMO.DEVICES:LIMIT
- name :
- xmo/devices_limit
- quality :
- Not Checked
- rank :
- 1
- shape :
- [2]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- null
- uda_name :
- /XMO/DEVICES/LIMIT
- units :
- uuid :
- d1af5b6e-0ba9-51d0-8f62-763cef566a94
- version :
- -1
Array Chunk Bytes 128 B 128 B Shape (16,) (16,) Dask graph 1 chunks in 2 graph layers Data type float64 numpy.ndarray - omaha_1lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_1lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/1LZ
- units :
- uuid :
- ebf41216-9c2f-5910-ad99-ab76b6d2cc3b
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_2lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_2lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/2LT
- units :
- uuid :
- 1e84a280-d09e-5904-800e-ed6868b7dc0b
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_2lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_2lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/2LZ
- units :
- uuid :
- c3f59da1-9cf1-559f-8fc7-80392de84158
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_3lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_3lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/3LT
- units :
- uuid :
- a8d59196-403f-5fe1-9a38-d34de8754cd1
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_3lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_3lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/3LZ
- units :
- uuid :
- 9b985bf1-ab54-55dc-a75c-fbbdfa450902
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lr(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lr
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LR
- units :
- uuid :
- daaec6d8-97e0-59d8-9b75-0ad1fdcd7157
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LT
- units :
- uuid :
- 3b784696-3355-5c48-b419-905ca44b2228
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_4lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_4lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/4LZ
- units :
- uuid :
- 1827c7c0-d688-51be-aa60-b49f70cdecba
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5lt(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5lt
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5LT
- units :
- uuid :
- 3f62be95-c42f-5e5a-bf73-03f6d225b9b6
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5LZ
- units :
- uuid :
- cc482786-87a5-59b6-bba0-f344bb6187c0
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5ur(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5ur
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UR
- units :
- uuid :
- 92ebb676-92e0-5c78-a044-8384b4bf1a72
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5ut(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5ut
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UT
- units :
- uuid :
- 86178cf2-ed01-58d8-8be5-9fa72c183679
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_5uz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_5uz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/5UZ
- units :
- uuid :
- ba8b5d4f-8e89-58a7-8c2b-3405c5a2a112
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - omaha_6lz(time)float32dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- arb
- mds_name :
- name :
- xmo/omaha_6lz
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/OMAHA/6LZ
- units :
- uuid :
- d91166e7-867c-58a0-a710-ff010bd00f44
- version :
- -1
Array Chunk Bytes 5.34 MiB 341.80 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float32 numpy.ndarray - time1(time)float64dask.array<chunksize=(87500,), meta=np.ndarray>
- description :
- dims :
- ['time']
- file_name :
- None
- format :
- None
- label :
- Time
- mds_name :
- \TOP.RAW.XMO:TIME1
- name :
- xmo/time1
- quality :
- Not Checked
- rank :
- 1
- shape :
- [1400000]
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- time_index :
- 0
- uda_name :
- /XMO/TIME1
- units :
- s
- uuid :
- bfe58a24-e54f-5239-afb0-4c84aedc3006
- version :
- -1
Array Chunk Bytes 10.68 MiB 683.59 kiB Shape (1400000,) (87500,) Dask graph 16 chunks in 2 graph layers Data type float64 numpy.ndarray
- dim_0PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype='int32', name='dim_0'))
- dim_1PandasIndex
PandasIndex(Index([0, 1], dtype='int32', name='dim_1'))
- timePandasIndex
PandasIndex(Index([-0.09999999999999998, -0.09999949999999998, -0.09999899999999998, -0.09999849999999998, -0.09999799999999998, -0.09999749999999998, -0.09999699999999997, -0.09999649999999997, -0.09999599999999997, -0.09999549999999997, ... 0.5999949999958225, 0.5999954999958225, 0.5999959999958224, 0.5999964999958224, 0.5999969999958223, 0.5999974999958223, 0.5999979999958223, 0.5999984999958222, 0.5999989999958222, 0.5999994999958221], dtype='float64', name='time', length=1400000))
- description :
- Magnetic Field Measurements: OMAHA high frequency Mirnov coils (OMAHA), Centre Column Halo Current
- file_name :
- xmo029790.nc
- format :
- CDF
- mds_name :
- None
- name :
- xmo
- quality :
- Not Checked
- shot_id :
- 29790
- signal_type :
- Raw
- source :
- xmo
- uda_name :
- XMO
- uuid :
- ff541ac3-6b1c-5373-8d33-b85fd46bc75b
- version :
- -1
We can first look at the line profile for one of the Mirnov coils:
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
ax.plot(dataset['time'], dataset['omaha_3lz'])
ax.grid()
ax.grid(alpha=0.3)
ax.set_ylabel('Volts (V)')
ax.set_xlabel('Time (s)')
plt.tight_layout()

Looking at the spectrogram of the dataset can show us information about the MHD modes. Here we see several mode instabilities occuring before the plasma is lost.
ds = dataset['omaha_3lz']
# Parameters to limit the number of frequencies
nperseg = 2000 # Number of points per segment
nfft = 2000 # Number of FFT points
# Compute the Short-Time Fourier Transform (STFT)
sample_rate = 1/(ds.time[1] - ds.time[0])
f, t, Zxx = stft(ds, fs=int(sample_rate), nperseg=nperseg, nfft=nfft)
fig, ax = plt.subplots(figsize=(15, 5))
cax = ax.pcolormesh(t, f/1000, np.abs(Zxx), shading='nearest', cmap='jet', norm=LogNorm(vmin=1e-5))
ax.set_ylim(0, 50)
ax.set_title(f'XMO/OMAHA/3LZ - Shot {ds.attrs["shot_id"]}')
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')
plt.colorbar(cax, ax=ax)
<matplotlib.colorbar.Colorbar at 0x36506bf50>

Photron Camera Data#
RBA#
RBA contains the data from Photron bullet camera A.
A Photron Bullet Camera provides high-speed, high-resolution imaging of fast transient events in the plasma. Its ability to capture detailed images of plasma instabilities, turbulence, and disruptions makes it essential for understanding and controlling plasma behavior, ultimately aiding in the pursuit of sustained nuclear fusion.
dataset = xr.open_zarr(store, group='rba')
dataset
<xarray.Dataset> Size: 315MB Dimensions: (time: 450, height: 912, width: 768) Coordinates: * time (time) float64 4kB 0.000256 0.002256 0.004256 ... 0.6963 0.6983 Dimensions without coordinates: height, width Data variables: data (time, height, width) uint8 315MB dask.array<chunksize=(57, 114, 192), meta=np.ndarray> Attributes: (12/48) CLASS: IMAGE IMAGE_SUBCLASS: IMAGE_INDEXED IMAGE_VERSION: 1.2 board_temp: 0.0 bottom: 1024 camera: ... ... units: pixels uuid: f283e185-58a3-54f4-a5f4-a6fef86f9347 vbin: 0 version: -1 view: Hl07 floor mount + FFC2 + 25mm lens + CII filter width: 768
- time: 450
- height: 912
- width: 768
- time(time)float640.000256 0.002256 ... 0.6963 0.6983
- units :
- s
array([2.56000e-04, 2.25600e-03, 4.25600e-03, ..., 6.94256e-01, 6.96256e-01, 6.98256e-01])
- data(time, height, width)uint8dask.array<chunksize=(57, 114, 192), meta=np.ndarray>
Array Chunk Bytes 300.59 MiB 1.19 MiB Shape (450, 912, 768) (57, 114, 192) Dask graph 256 chunks in 2 graph layers Data type uint8 numpy.ndarray
- timePandasIndex
PandasIndex(Index([ 0.000256, 0.0022559999999999998, 0.004256, 0.006255999999999999, 0.008256, 0.010256, 0.012256, 0.014256, 0.016256, 0.018255999999999998, ... 0.680256, 0.682256, 0.684256, 0.686256, 0.688256, 0.690256, 0.692256, 0.694256, 0.696256, 0.698256], dtype='float64', name='time', length=450))
- CLASS :
- IMAGE
- IMAGE_SUBCLASS :
- IMAGE_INDEXED
- IMAGE_VERSION :
- 1.2
- board_temp :
- 0.0
- bottom :
- 1024
- camera :
- ccd_temp :
- 0.0
- codex :
- JP2
- date_time :
- 2013-09-25T13:21:08Z
- depth :
- 8
- description :
- Photron bullet camera A
- dims :
- ['time', 'height', 'width']
- exposure :
- 250.0
- file_format :
- IPX-1
- file_name :
- rba030421.ipx
- filter :
- format :
- IPX
- gain :
- [4.0, 0.0]
- hbin :
- 0
- height :
- 912
- is_color :
- 0
- left :
- 129
- lens :
- mds_name :
- None
- n_frames :
- 450
- name :
- rba
- offset :
- [0.0, 0.0]
- orientation :
- 0
- pre_exp :
- 0.0
- quality :
- Not Checked
- rank :
- 3
- right :
- 896
- shape :
- [450, 912, 768]
- shot :
- 30421
- shot_id :
- 30421
- signal_type :
- Image
- source :
- rba
- strobe :
- 0
- taps :
- 0
- top :
- 113
- trigger :
- -0.10000000149011612
- uda_name :
- RBA
- units :
- pixels
- uuid :
- f283e185-58a3-54f4-a5f4-a6fef86f9347
- vbin :
- 0
- version :
- -1
- view :
- Hl07 floor mount + FFC2 + 25mm lens + CII filter
- width :
- 768
plt.imshow(dataset.data[50], cmap='gray')
<matplotlib.image.AxesImage at 0x39ef01650>

RBB#
RBB contains the data from Photron bullet camera B, which is looking at the central column.
A Photron Bullet Camera provides high-speed, high-resolution imaging of fast transient events in the plasma. Its ability to capture detailed images of plasma instabilities, turbulence, and disruptions makes it essential for understanding and controlling plasma behavior, ultimately aiding in the pursuit of sustained nuclear fusion.
dataset = xr.open_zarr(store, group='rbb')
dataset
<xarray.Dataset> Size: 143MB Dimensions: (time: 500, height: 448, width: 640) Coordinates: * time (time) float64 4kB 1.6e-05 0.002016 0.004016 ... 0.694 0.696 0.698 Dimensions without coordinates: height, width Data variables: data (time, height, width) uint8 143MB dask.array<chunksize=(63, 112, 160), meta=np.ndarray> Attributes: (12/48) CLASS: IMAGE IMAGE_SUBCLASS: IMAGE_INDEXED IMAGE_VERSION: 1.2 board_temp: 0.0 bottom: 680 camera: ... ... units: pixels uuid: 857f64f0-5329-5fc3-9e70-dafd4a69d4e7 vbin: 0 version: -1 view: photron HM10 + Dalpha filter width: 640
- time: 500
- height: 448
- width: 640
- time(time)float641.6e-05 0.002016 ... 0.696 0.698
- units :
- s
array([1.60000e-05, 2.01600e-03, 4.01600e-03, ..., 6.94016e-01, 6.96016e-01, 6.98016e-01])
- data(time, height, width)uint8dask.array<chunksize=(63, 112, 160), meta=np.ndarray>
Array Chunk Bytes 136.72 MiB 1.08 MiB Shape (500, 448, 640) (63, 112, 160) Dask graph 128 chunks in 2 graph layers Data type uint8 numpy.ndarray
- timePandasIndex
PandasIndex(Index([ 1.6e-05, 0.002016, 0.004016, 0.006016, 0.008015999999999999, 0.010015999999999999, 0.012015999999999999, 0.014015999999999999, 0.016016, 0.018016, ... 0.680016, 0.682016, 0.684016, 0.686016, 0.688016, 0.690016, 0.692016, 0.694016, 0.696016, 0.698016], dtype='float64', name='time', length=500))
- CLASS :
- IMAGE
- IMAGE_SUBCLASS :
- IMAGE_INDEXED
- IMAGE_VERSION :
- 1.2
- board_temp :
- 0.0
- bottom :
- 680
- camera :
- ccd_temp :
- 0.0
- codex :
- JP2
- date_time :
- 2013-09-25T13:06:11Z
- depth :
- 8
- description :
- Photron bullet camera B
- dims :
- ['time', 'height', 'width']
- exposure :
- 10.0
- file_format :
- IPX-1
- file_name :
- rbb030421.ipx
- filter :
- format :
- IPX
- gain :
- [4.0, 0.0]
- hbin :
- 0
- height :
- 448
- is_color :
- 0
- left :
- 193
- lens :
- mds_name :
- None
- n_frames :
- 500
- name :
- rbb
- offset :
- [0.0, 0.0]
- orientation :
- 0
- pre_exp :
- 0.0
- quality :
- Not Checked
- rank :
- 3
- right :
- 832
- shape :
- [500, 448, 640]
- shot :
- 30421
- shot_id :
- 30421
- signal_type :
- Image
- source :
- rbb
- strobe :
- 0
- taps :
- 0
- top :
- 233
- trigger :
- -0.10000000149011612
- uda_name :
- RBB
- units :
- pixels
- uuid :
- 857f64f0-5329-5fc3-9e70-dafd4a69d4e7
- vbin :
- 0
- version :
- -1
- view :
- photron HM10 + Dalpha filter
- width :
- 640
plt.imshow(dataset.data[50], cmap='gray')
<matplotlib.image.AxesImage at 0x365711650>
