!pip install pandas matplotlib fsspec s3fs "zarr<3" pyarrow xarray
Show code cell output
Requirement already satisfied: pandas in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.0.3)
Requirement already satisfied: matplotlib in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (3.9.0)
Requirement already satisfied: fsspec in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: s3fs in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2024.5.0)
Requirement already satisfied: zarr<3 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2.15.0)
Requirement already satisfied: pyarrow in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (12.0.1)
Requirement already satisfied: xarray in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (2023.7.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from pandas) (1.25.2)
Requirement already satisfied: contourpy>=1.0.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (4.53.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: aiobotocore<3.0.0,>=2.5.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (2.13.0)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from s3fs) (3.9.5)
Requirement already satisfied: asciitree in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.3.3)
Requirement already satisfied: fasteners in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.19)
Requirement already satisfied: numcodecs>=0.10.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from zarr<3) (0.12.1)
Requirement already satisfied: botocore<1.34.107,>=1.34.70 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.34.106)
Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (1.16.0)
Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiobotocore<3.0.0,>=2.5.4->s3fs) (0.11.0)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (23.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (1.9.4)
Requirement already satisfied: six>=1.5 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (1.0.1)
Requirement already satisfied: urllib3!=2.2.0,<3,>=1.25.4 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from botocore<1.34.107,>=1.34.70->aiobotocore<3.0.0,>=2.5.4->s3fs) (2.2.1)
Requirement already satisfied: idna>=2.0 in /Users/rt2549/miniconda3/envs/mast/lib/python3.11/site-packages (from yarl<2.0,>=1.0->aiohttp!=4.0.0a0,!=4.0.0a1->s3fs) (3.7)
Curated FAIR MAST Data#
In this notebook we demonstrate the variety of different data available in the FAIR MAST dataset. In this example we are using a highly curated version of the MAST data, which includes cropping, interpolation, calibration, etc. of each signal, as well as mapping each diagnostic group try and follow IMAS naming convetions. Shots are also filtered using the plasma current to remove shots which were only used for testing, comissioning, machine calibration etc.
import zarr
import zarr.storage
import fsspec
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from scipy.signal import stft
def plot_1d_profiles(profiles: xr.Dataset):
"""Helper function for plotting 1D profiles"""
n = int(np.ceil(len(profiles.data_vars) / 2))
fig, axes = plt.subplots(n, 2, figsize=(10, 2*n))
axes = axes.flatten()
for i, name in enumerate(profiles.data_vars.keys()):
profiles[name].plot(x='time', ax=axes[i])
for ax in axes:
ax.grid('on', alpha=0.5)
ax.set_xlim(profiles.time.min(), profiles.time.max())
plt.tight_layout()
First we need to connect to the remote S3 storage bucket to access the data. Each shot from MAST is stored as a seperate Zarr file.
Using fsspec
and xarray
we can remotely read data directly over the web. In the example below we also turn on local file caching, allowing us to avoid reading over the network multiple times.
shot_id = 30421
endpoint_url = 'https://s3.echo.stfc.ac.uk'
url = f's3://mast/level2/shots/{shot_id}.zarr'
# Connect to remote S3 file system, with local file caching.
fs = fsspec.filesystem(
**dict(
protocol='filecache',
target_protocol="s3",
cache_storage='.cache',
target_options=dict(anon=True, endpoint_url=endpoint_url)
)
)
# Get a handle to the remote file
store = zarr.storage.FSStore(fs=fs, url=url)
Summary Profiles#
The summary group provides a collection of general physics quantities for an experiment.
profiles = xr.open_zarr(store, group='summary')
plot_1d_profiles(profiles)
profiles
<xarray.Dataset> Dimensions: (time: 2906) Coordinates: * time (time) float64 -0.0612 -0.06095 ... 0.6648 0.665 Data variables: ip (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> line_average_n_e (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> neutron_rates_total (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> power_nbi (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> power_radiated (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> Attributes: description: imas: summary label: Plasma Current name: summary uda_name: AMC_PLASMA CURRENT units: A

Pulse Schedule#
profiles = xr.open_zarr(store, group='pulse_schedule')
fig, axes = plt.subplots(2, 1, figsize=(10, 5))
axes = axes.flatten()
profiles['i_plasma'].plot(x='time', ax=axes[0])
profiles['n_e_line'].plot(x='time', ax=axes[1])
# profiles['vertical_control'].plot(x='time', ax=axes[2])
# for i in range(len(profiles.gas_channel)):
# profiles['gas'].isel(gas_channel=i).plot(x='time', ax=axes[3])
for ax in axes:
ax.grid('on', alpha=0.5)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (time: 2906) Coordinates: * time (time) float64 -0.0612 -0.06095 -0.0607 ... 0.6645 0.6648 0.665 Data variables: i_plasma (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> n_e_line (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> Attributes: description: imas: pulse_schedule label: /xdc/ip/t/ipref name: pulse_schedule uda_name: /xdc/ip/t/ipref units: A

Magnetics#
Magnetic diagnostics for equilibrium identification and plasma shape control.
profiles = xr.open_zarr(store, group='magnetics')
fig, axes = plt.subplots(4, 3, figsize=(8, 10))
axes = axes.flatten()
profiles['b_field_pol_probe_ccbv_field'].plot.line(x='time', ax=axes[0], add_legend=False)
profiles['b_field_pol_probe_obv_field'].plot.line(x='time', ax=axes[1], add_legend=False)
profiles['b_field_pol_probe_obr_field'].plot.line(x='time', ax=axes[2], add_legend=False)
profiles['b_field_pol_probe_omv_voltage'].plot.line(x='time_mirnov', ax=axes[3], add_legend=False)
profiles['b_field_pol_probe_cc_field'].plot.line(x='time_mirnov', ax=axes[4], add_legend=False)
profiles['b_field_tor_probe_cc_field'].plot.line(x='time_mirnov', ax=axes[5], add_legend=False)
profiles['b_field_tor_probe_saddle_field'].plot.line(x='time_saddle', ax=axes[6], add_legend=False)
profiles['b_field_tor_probe_saddle_voltage'].plot.line(x='time_saddle', ax=axes[7], add_legend=False)
profiles['b_field_tor_probe_omaha_voltage'].plot.line(x='time_omaha', ax=axes[8], add_legend=False)
profiles['flux_loop_flux'].plot.line(x='time', ax=axes[9], add_legend=False)
profiles['ip'].plot.line(x='time', ax=axes[10], add_legend=False)
for ax in axes:
ax.grid('on', alpha=0.5)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (b_field_pol_probe_cc_channel: 5, time_mirnov: 363201, b_field_pol_probe_ccbv_channel: 40, time: 3633, b_field_pol_probe_obr_channel: 18, b_field_pol_probe_obv_channel: 18, ... b_field_tor_probe_omaha_channel: 4, time_omaha: 7264001, b_field_tor_probe_saddle_field_channel: 12, time_saddle: 36321, b_field_tor_probe_saddle_voltage_channel: 12, flux_loop_channel: 15) Coordinates: (12/14) * b_field_pol_probe_cc_channel (b_field_pol_probe_cc_channel) <U13 ... * b_field_pol_probe_ccbv_channel (b_field_pol_probe_ccbv_channel) <U10 ... * b_field_pol_probe_obr_channel (b_field_pol_probe_obr_channel) <U9 ... * b_field_pol_probe_obv_channel (b_field_pol_probe_obv_channel) <U9 ... * b_field_pol_probe_omv_channel (b_field_pol_probe_omv_channel) <U11 ... * b_field_tor_probe_cc_channel (b_field_tor_probe_cc_channel) <U13 ... ... ... * b_field_tor_probe_saddle_voltage_channel (b_field_tor_probe_saddle_voltage_channel) <U15 ... * flux_loop_channel (flux_loop_channel) <U12 'AMB_F... * time (time) float64 -0.0612 ... 0.6652 * time_mirnov (time_mirnov) float64 -0.0612 .... * time_omaha (time_omaha) float64 -0.0612 ..... * time_saddle (time_saddle) float64 -0.0612 .... Data variables: b_field_pol_probe_cc_field (b_field_pol_probe_cc_channel, time_mirnov) float64 dask.array<chunksize=(1, 90801), meta=np.ndarray> b_field_pol_probe_ccbv_field (b_field_pol_probe_ccbv_channel, time) float64 dask.array<chunksize=(20, 1817), meta=np.ndarray> b_field_pol_probe_obr_field (b_field_pol_probe_obr_channel, time) float64 dask.array<chunksize=(9, 3633), meta=np.ndarray> b_field_pol_probe_obv_field (b_field_pol_probe_obv_channel, time) float64 dask.array<chunksize=(9, 3633), meta=np.ndarray> b_field_pol_probe_omv_voltage (b_field_pol_probe_omv_channel, time_mirnov) float64 dask.array<chunksize=(1, 90801), meta=np.ndarray> b_field_tor_probe_cc_field (b_field_tor_probe_cc_channel, time_mirnov) float64 dask.array<chunksize=(1, 90801), meta=np.ndarray> b_field_tor_probe_omaha_voltage (b_field_tor_probe_omaha_channel, time_omaha) float64 dask.array<chunksize=(1, 227001), meta=np.ndarray> b_field_tor_probe_saddle_field (b_field_tor_probe_saddle_field_channel, time_saddle) float64 dask.array<chunksize=(3, 18161), meta=np.ndarray> b_field_tor_probe_saddle_voltage (b_field_tor_probe_saddle_voltage_channel, time_saddle) float64 dask.array<chunksize=(3, 18161), meta=np.ndarray> flux_loop_flux (flux_loop_channel, time) float64 dask.array<chunksize=(8, 3633), meta=np.ndarray> ip (time) float64 dask.array<chunksize=(3633,), meta=np.ndarray> Attributes: description: imas: magnetics label: Plasma Current name: magnetics uda_name: AMC_PLASMA CURRENT units: A

Looking at the spectrogram of one of the mirnov coils can show us information about the MHD modes. Here we see several mode instabilities occuring before the plasma is lost.
ds = profiles['b_field_pol_probe_omv_voltage'].isel(b_field_pol_probe_omv_channel=1)
# Parameters to limit the number of frequencies
nperseg = 2000 # Number of points per segment
nfft = 2000 # Number of FFT points
# Compute the Short-Time Fourier Transform (STFT)
sample_rate = 1/(ds.time_mirnov[1] - ds.time_mirnov[0])
f, t, Zxx = stft(ds, fs=int(sample_rate), nperseg=nperseg, nfft=nfft)
fig, ax = plt.subplots(figsize=(15, 5))
cax = ax.pcolormesh(t, f/1000, np.abs(Zxx), shading='nearest', cmap='jet', norm=LogNorm(vmin=1e-5))
ax.set_ylim(0, 50)
ax.set_title(f'Shot {shot_id}')
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')
plt.colorbar(cax, ax=ax)
<matplotlib.colorbar.Colorbar at 0x37a248550>

Spectrometer Visible#
Spectrometer in visible light range diagnostic
profiles = xr.open_zarr(store, group='spectrometer_visible')
profiles['filter_spectrometer_dalpha_voltage'].plot.line(x='time')
profiles['filter_spectrometer_bes_voltage'].isel(bes_channel=0).plot.line(x='time_bes')
profiles
<xarray.Dataset> Dimensions: (bes_channel: 32, dalpha_channel: 3, time: 36321, time_bes: 1452801) Coordinates: * bes_channel (bes_channel) <U13 'xbt/channel01' ..... * dalpha_channel (dalpha_channel) <U13 'XIM_DA/HM10/R'... * time (time) float64 -0.0612 ... 0.6652 * time_bes (time_bes) float64 -0.0612 ... 0.6652 Data variables: density_gradient (time) float64 dask.array<chunksize=(18161,), meta=np.ndarray> filter_spectrometer_bes_voltage (bes_channel, time_bes) float64 dask.array<chunksize=(2, 90801), meta=np.ndarray> filter_spectrometer_dalpha_voltage (dalpha_channel, time) float64 dask.array<chunksize=(2, 18161), meta=np.ndarray> Attributes: description: imas: None label: Volt name: spectrometer_visible uda_name: XIM_DA/HM10/R units: V

PF Active#
profiles = xr.open_zarr(store, group='pf_active')
fig, axes = plt.subplots(1, 3)
axes = axes.flatten()
profiles['coil_current'].plot.line(x='time', ax=axes[0], add_legend=False)
profiles['coil_voltage'].plot.line(x='time', ax=axes[1], add_legend=False)
profiles['solenoid_current'].plot.line(x='time', ax=axes[2], add_legend=False)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (channel: 14, time: 2906) Coordinates: * channel (channel) <U21 '/xdc/pf/f/p1' ... 'AMC_P5U FEED CURRENT' * time (time) float64 -0.0612 -0.06095 -0.0607 ... 0.6648 0.665 Data variables: coil_current (channel, time) float64 dask.array<chunksize=(7, 2906), meta=np.ndarray> coil_voltage (channel, time) float64 dask.array<chunksize=(7, 2906), meta=np.ndarray> solenoid_current (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> Attributes: description: imas: pf_active label: Sol Current name: pf_active uda_name: AMC_SOL CURRENT units: A

Soft X-rays#
profiles = xr.open_zarr(store, group='soft_x_rays')
fig, axes = plt.subplots(3, 1)
profiles['horizontal_cam_lower'].plot.line(x='time', ax=axes[1], add_legend=False)
axes[1].set_ylim(0, 0.02)
profiles['horizontal_cam_upper'].plot.line(x='time', ax=axes[2], add_legend=False)
axes[2].set_ylim(0, 0.02)
if "tangential_cam" in profiles:
profiles['tangential_cam'].plot.line(x='time', ax=axes[0], add_legend=False)
axes[0].set_ylim(0, 0.2)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (horizontal_cam_lower_channel: 18, time: 363201, horizontal_cam_upper_channel: 18, tangential_cam_channel: 18) Coordinates: * horizontal_cam_lower_channel (horizontal_cam_lower_channel) <U14 '/xsx/H... * horizontal_cam_upper_channel (horizontal_cam_upper_channel) <U14 '/xsx/H... * tangential_cam_channel (tangential_cam_channel) <U12 '/xsx/TCAM/1'... * time (time) float64 -0.0612 -0.0612 ... 0.6652 Data variables: horizontal_cam_lower (horizontal_cam_lower_channel, time) float64 dask.array<chunksize=(3, 45401), meta=np.ndarray> horizontal_cam_upper (horizontal_cam_upper_channel, time) float64 dask.array<chunksize=(3, 45401), meta=np.ndarray> tangential_cam (tangential_cam_channel, time) float64 dask.array<chunksize=(3, 45401), meta=np.ndarray> Attributes: description: imas: None label: Volt name: soft_x_rays uda_name: /xsx/TCAM/1 units: V

Thomson Profiles#
Thomson scattering measurements in a tokamak provide information about the plasma’s electron temperature and density profiles. The diagnostic analyses the scattering of laser light off free electrons in the plasma from a number of radial channels.
Below we plot the following profiles measured by the Thomson diagnostic
\(T_e\) - Electron temperature
\(N_e\) - Electron density
\(P_e\) - Electron pressure
profiles = xr.open_zarr(store, group='thomson_scattering')
profiles
fig, axes = plt.subplots(3, 1)
axes = axes.flatten()
profiles.t_e.plot(x='time', y='major_radius', ax=axes[0])
profiles.n_e.plot(x='time', y='major_radius', ax=axes[1])
profiles.p_e.plot(x='time', y='major_radius', ax=axes[2])
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (major_radius: 120, time: 146) Coordinates: * major_radius (major_radius) float64 0.3 0.31 0.32 0.33 ... 1.47 1.48 1.49 * time (time) float64 -0.0612 -0.0562 -0.0512 ... 0.6588 0.6638 Data variables: n_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> n_e_core (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> p_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> t_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> t_e_core (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> Attributes: description: imas: thomson_scattering label: core temperature name: thomson_scattering uda_name: AYC_TE_CORE units: eV

fig, axes = plt.subplots(2, 1)
profiles['t_e_core'].plot(x='time', ax=axes[0])
profiles['n_e_core'].plot(x='time', ax=axes[1])
for ax in axes:
ax.grid('on', alpha=0.5)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (major_radius: 120, time: 146) Coordinates: * major_radius (major_radius) float64 0.3 0.31 0.32 0.33 ... 1.47 1.48 1.49 * time (time) float64 -0.0612 -0.0562 -0.0512 ... 0.6588 0.6638 Data variables: n_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> n_e_core (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> p_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> t_e (time, major_radius) float64 dask.array<chunksize=(146, 120), meta=np.ndarray> t_e_core (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> Attributes: description: imas: thomson_scattering label: core temperature name: thomson_scattering uda_name: AYC_TE_CORE units: eV

CXRS Profiles#
Charge Exchange Recombination Spectroscopy (CXRS) measurements provide information about ion temperature and plasma rotation. This diagnostic analyses the light emitted from charge exchange reactions between injected neutral beams and plasma ions.
Below we plot the following profiles measured by the CXRS diagnostic
\(T_i\) - Ion temperature
\(V_i\) - Ion velocity
profiles = xr.open_zarr(store, group='charge_exchange')
fig, axes = plt.subplots(2, 1)
profiles['t_i'].plot(x='time', y='major_radius', ax=axes[0], vmax=1000)
profiles['v_i'].plot(x='time', y='major_radius', ax=axes[1], vmax=1000)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (major_radius: 160, time: 73) Coordinates: * major_radius (major_radius) float64 0.0 0.01 0.02 0.03 ... 1.57 1.58 1.59 * time (time) float64 -0.0612 -0.0512 -0.0412 ... 0.6488 0.6588 Data variables: t_i (time, major_radius) float64 dask.array<chunksize=(73, 160), meta=np.ndarray> v_i (time, major_radius) float64 dask.array<chunksize=(73, 160), meta=np.ndarray> Attributes: description: imas: charge_exchange label: Carbon temperature name: charge_exchange uda_name: ACT_SS_TEMPERATURE units: eV

Equilibrium#
profiles = xr.open_zarr(store, group='equilibrium')
profile_1d = profiles.drop_vars(['j_tor', 'psi', 'q'])
plot_1d_profiles(profile_1d)
profiles
<xarray.Dataset> Dimensions: (time: 146, z: 65, major_radius: 65, n_boundary_coords: 139, n_x_points: 4, profile_r: 65) Coordinates: * major_radius (major_radius) float64 0.06 0.09 0.12 ... 1.95 1.98 * n_boundary_coords (n_boundary_coords) float32 0.0 1.0 2.0 ... 137.0 138.0 * n_x_points (n_x_points) <U16 'EFM_XPOINT1_R(C)' ... 'EFM_XPOINT... * profile_r (profile_r) float32 0.0 0.01562 0.03125 ... 0.9844 1.0 * time (time) float64 -0.0612 -0.0562 ... 0.6588 0.6638 * z (z) float32 -2.0 -1.938 -1.875 ... 1.875 1.938 2.0 Data variables: (12/35) beta_normal (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> beta_pol (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> beta_tor (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> bphi_rmag (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> bvac_rmag (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> da_rating (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> ... ... triangularity_upper (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> vloop_dynamic (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> vloop_static (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> whmd (time) float64 dask.array<chunksize=(146,), meta=np.ndarray> x_point_r (n_x_points, time) float64 dask.array<chunksize=(4, 146), meta=np.ndarray> x_point_z (n_x_points, time) float64 dask.array<chunksize=(4, 146), meta=np.ndarray> Attributes: description: imas: equilibrium label: q(r) at z=0. name: equilibrium uda_name: EFM_Q(R) units:

fig, axes = plt.subplots(1, 3, figsize=(10, 5))
profiles['j_tor'].isel(time=50).plot(ax=axes[0], x='major_radius')
profiles['psi'].isel(time=50).plot(ax=axes[1], x='major_radius')
profiles['q'].plot(ax=axes[2])
plt.tight_layout()

Gas Injection#
profiles = xr.open_zarr(store, group='gas_injection')
plot_1d_profiles(profiles)
plt.tight_layout()
profiles
<xarray.Dataset> Dimensions: (time: 2906) Coordinates: * time (time) float64 -0.0612 -0.06095 -0.0607 ... 0.6648 0.665 Data variables: inboard_total (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> outboard_total (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> pressure (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> total_injected (time) float64 dask.array<chunksize=(2906,), meta=np.ndarray> Attributes: description: imas: gas_injection label: Integrated total gas name: gas_injection uda_name: AGA_INTEG_GAS units: count
